Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Smerdon, Brian D. Smith, Laura A. Harrington, Glenn A. Gardner, W. Payton Piane, Claudio Delle Sarout, Joel |
| Copyright Year | 2014 |
| Abstract | A workflow is described to estimate specific storage (S $_{s}$) and hydraulic conductivity (K) from a profile of vibrating wire piezometers embedded into a regional aquitard in Australia. The loading efficiency, compressibility and S $_{s}$ were estimated from pore pressure response to atmospheric pressure changes, and K was estimated from the earliest part of the measurement record following grouting. Results indicate that S $_{s}$ and K were, respectively, 8.8 × 10$^{−6}$ to 1.2 × 10$^{−5}$ m$^{−1}$ and 2 × 10$^{−12}$ m s$^{−1}$ for a claystone/siltstone, and 4.3 × 10$^{−6}$ to 9.6 × 10$^{−6}$ m$^{−1}$ and 1 × 10$^{−12}$ to 5 × 10$^{−12}$ m s$^{−1}$ for a thick mudstone. K estimates from the pore pressure response are within one order of magnitude when compared to direct measurement in a laboratory and inverse modelled flux rates determined from natural tracer profiles. Further analysis of the evolution and longevity of the properties of borehole grout (e.g. thermal and chemical effects) may help refine the estimation of formation hydraulic properties using this workflow. However, the convergence of K values illustrates the benefit of multiple lines of evidence to support aquitard characterization. An additional benefit of in situ pore pressure measurement is the generation of long-term data to constrain groundwater flow models, which provides a link between laboratory scale data and the formation scale.Un processus de travail est décrit pour estimer l’emmagasinement spécifique (S $_{ s }$) et la conductivité hydraulique (K) à partir d’un profil de piézomètres à corde vibrante implantés dans un aquitard régional en Australie. L’efficacité de la charge, la compressibilité et Ss ont été estimés à partir de la réponse de la pression interstitielle à des modifications de pression atmosphérique, et K a été estimée à partir de la première partie de l’enregistrement des mesures suivant l’injection. Les résultats indiquent que S $_{ s }$ et K, ont été respectivement de 8.8 × 10$^{−6}$ à 1.2 × 10$^{−5}$ m$^{−1}$ et 2 × 10$^{−12}$ m s$^{−1}$ pour une argilite/siltite, et de 4.3 × 10$^{−6}$ à 9.6 × 10$^{−6}$ m$^{−1}$ et 1 × 10$^{−12}$ à 5 × 10$^{−12}$ m s$^{−1}$ pour un mudstone épais. Les estimations de K à partir de la réponse de la pression interstitielle sont d’un ordre de grandeur des mesures directes en laboratoire et des vitesses de flux déterminés par modèle inverse à partir des profils de traceurs naturels. Une analyse plus approfondie de l’évolution et de la longévité des propriétés des coulis de forage (par ex. effets thermiques et chimiques) peut aider à affiner l’estimation des propriétés hydrauliques de la formation en utilisant ce processus de travail. Cependant, la convergence des valeurs de K illustre le bénéfice de l’utilisation de plusieurs sources de données pour caractériser un aquitard. Un avantage supplémentaire des mesures de la pression in situ de la pression interstitielle est la production de données à long terme pour contraindre des modèles hydrodynamiques des eaux souterraines, ce qui permet d’établir un lien entre les données de laboratoire et celles à l’échelle de la formation.Se describe un diagrama de flujo para estimar el almacenamiento específico (S $_{s}$) y la conductividad hidráulica (K) a partir de un perfil de piezómetros de cuerda vibrante incrustado en un acuitardo regional en Australia. Se estimaron la eficiencia de carga, compresibilidad y S $_{s}$ a partir de la respuesta de la presión poral a cambios de presión atmosférica, y K fue estimado a partir de la parte más temprana del registro de mediciones posteriores a la cementación. Los resultados indican que S $_{s}$ y K fueron, respectivamente, 8.8 × 10$^{−6}$ a 1.2 × 10$^{−5}$ m$^{−1}$ y 2 × 10$^{−12}$ m s$^{−1}$ para una arcilita/limolita, y 4.3 × 10$^{−6}$ a 9.6 × 10$^{−6}$ m$^{−1}$ y 1 × 10$^{−12}$ a 5 × 10$^{−12}$ m s$^{−1}$ para una fangolita espesa. Las estimaciones de K a partir de la respuesta de la presión poral están dentro de un orden de magnitud cuando se las compara a mediciones directas en el laboratorio y a tasas de flujo de modelado inverso determinado a partir de perfiles de trazadores naturales. Un análisis más detallado de la evolución y longevidad de las propiedades del pozo cementado (por ejemplo efectos químicos y termales) puede ayudar a ajustar la estimación de las propiedades hidráulicas de la formación usando este diagrama de flujo. Sin embargo, la convergencia de los valores de K ilustra el beneficio de múltiples líneas de evidencias para apoyar a la caracterización del acuitardo. Un beneficio adicional de la medición de la presión poral in situ es la generación de datos a largo plazo para restringir los modelos de flujo de agua subterránea, lo cual proporciona una vínculo entre los datos a escala de laboratorio y la escala de formación.本文论述了估算澳大利亚区域隔水层中振弦测压计剖面单位储水量(S $_{s}$)和水力传导率(K)的工作流程。通过孔隙压力对大气压力变化的反应估算了加载效率、压缩率及单位储水量,同时也根据灌浆后最早的测量记录估算了水力传导率。结果显示,单位储水量和水力传导率在粘土岩、粉砂岩中分别为8.8 × 10$^{−6}$ 到 1.2 × 10$^{−5}$ m$^{−1}$ 和 2 × 10$^{−12}$ m s$^{−1}$,在泥岩中分别为4.3 × 10$^{−6}$ 到 9.6 × 10$^{−6}$ m$^{−1}$ 和 1 × 10$^{−12}$ to 5 × 10$^{−12}$ m s$^{−1}$ 。与实验室直接测量结果和天然示踪剂剖面确定的反向模拟通量比较后发现,根据孔隙压力反应得到的水力传导率估算值处在一个数量级内。利用这个工作流程,有关钻孔泥浆特性(即热效应和化学效应)演化和寿命的进一步分析可有助于提高地层水力特性的估算精度。然而,水力传导率值的收敛阐明了证据多重线在支持隔水层特性描述中的优点。现场孔隙压力测量的另外一个优点就是不断积累长期资料,用来约束地下水模型,这些资料的产生搭建了实验室尺度资料和地层尺度资料之间的桥梁。É descrito um fluxograma de trabalho para estimar o armazenamento específico (S $_{s}$) e a condutividade hidráulica (K) a partir de um perfil de piezômetros de corda vibrante embutidos num aquitardo regional, na Austrália. A eficiência de carga, a compressibilidade e o S $_{s}$ foram estimados a partir da resposta da pressão dos poros às mudanças da pressão atmosférica, e o K foi estimado a partir da parte inicial do registro de medição na sequência da cimentação. Os resultados indicam que S $_{s}$ e K foram, respetivamente, 8.8 × 10$^{−6}$ a 1.2 × 10$^{−5}$ m$^{−1}$ e 2 × 10$^{−12}$ m s$^{−1}$ para um argilito/siltito, e 4.3 × 10$^{−6}$ a 9.6 × 10$^{−6}$ m$^{−1}$ e 1 × 10$^{−12}$ a 5 × 10$^{−12}$ m s$^{−1}$ para uma espessa formação de lamito. As estimativas de K obtidas a partir das respostas da pressão nos poros são de uma ordem de magnitude quando comparadas com medições diretas em laboratório e com taxas de fluxo baseadas em perfis de traçadores naturais e obtidas por modelação inversa. Análises posteriores da evolução e longevidade das propriedades do cimento do furo (por exemplo efeitos térmicos e químicos) podem ajudar a refinar a estimação das propriedades hidráulicas da formação, usando este fluxograma de trabalho. No entanto, a convergência dos valores de K ilustra o benefício de linhas de evidência múltiplas para apoiar a caraterização do aquitardo. Um benefício adicional das medições da pressão de poros in situ é a geração de dados de longo prazo para constranger os modelos de fluxo de água subterrânea, o que providencia uma ligação entre os dados à escala de laboratório e à escala da formação. |
| Starting Page | 1875 |
| Ending Page | 1887 |
| Page Count | 13 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 22 |
| Issue Number | 8 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2014-07-11 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Aquitard Hydraulic properties Sedimentary rocks Pore pressure Australia Hydrogeology Hydrology/Water Resources Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|