Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bonte, Matthijs Wols, Bas Maas, Kees Stuyfzand, Pieter |
| Copyright Year | 2016 |
| Abstract | Groundwater monitoring and pumping wells set in anoxic aquifers require attention to keep the groundwater free of dissolved oxygen (DO). In properly constructed monitoring or pumping wells, two processes can however still introduce oxygen to anoxic groundwater: (1) permeation of oxygen through polymer materials such as silicone, PVC, HDPE or Teflon, and (2) thermally driven convection, which can occur in all types of piezometers or wells, regardless of construction material, when the water table or pressure head is close (<10 m) to the land surface. Here, field measurements (temperature and DO well loggings) from a monitoring well in Bilthoven, the Netherlands, are combined with analytical and numerical modelling to investigate the role of both processes on oxygenation of anoxic groundwater in wells. The results of numerical and analytical modeling show that both permeation and convection can introduce oxygen into anoxic wells to near saturation concentrations. In the field data gathered, convection is primarily responsible for oxygen intrusion up to a depth of around 12 m. Oxygen intrusion through convection and permeation in monitoring and pumping wells may influence groundwater sampling and analyses, and may contribute to well clogging, depending on site conditions. The combination of field and modelling provides new insights into these processes, which can be used for both groundwater sampling and pumping well design.La surveillance de l’eau souterraine et le dispositif des puits de pompage dans des aquifères anoxiques exigent attention pour garder une eau souterraine exempte d’oxygène dissous (OD). Dans les puits de contrôle ou de pompage correctement construits, deux processus peuvent encore malgré tout introduire de l’oxygène dans une eau souterraine anoxique : (1) la perméation de l’oxygène à travers des matériaux polymères tels que les silicones, le PVC, le PEHD ou le Téflon et (2) la convection thermique qui peut se produire dans tous types de piézomètres ou de puits, quel que soit le matériau constitutif, quand la surface de la nappe ou la charge hydraulique est proche (< 10 m) de la surface du sol. Ici, des mesures de terrain (diagraphies en forage de la température et de l’oxygène dissous OD) sur un puits de surveillance à Bilthoven, Pays Bas, ont été combinées à un modèle analytique et numérique dans le but d’étudier le rôle des deux processus d’oxygénation d’une eau souterraine anoxique dans les puits. Les résultats de la modélisation analytique et numérique montrent que la perméation et la convection peuvent toutes deux introduire de l’oxygène dans des puits anoxiques à des concentrations proches de la saturation. Parmi les données de terrain collectées, la convection est la principale cause de la pénétration de l’oxygène jusqu’à une profondeur d’environ 12 m. L’introduction d’oxygène par convection et perméation dans les puits de contrôle et de pompage peut influencer l’échantillonnage des eaux souterraines et les résultats d’analyses et contribuer, selon les conditions de site, à l’obturation du puits. La combinaison des observations de terrain et de la modélisation fournit de nouvelles connaissances concernant ces processus, qui peuvent être utilisées à la fois pour l’échantillonnage de l’eau souterraine et la conception d’un puits de pompage.Los pozos de monitoreo y de bombeo de agua subterránea en los acuíferos anóxicos requieren atención para mantener el agua subterránea libre de oxígeno disuelto (OD). Sin embargo, dos procesos, en pozos de monitoreo o de bombeo adecuadamente construidos, pueden introducir oxígeno en el agua subterránea anóxica: (1) permeación de oxígeno a través de materiales de polímeros tales como silicona, PVC, HDPE o Teflon, y (2) convección impulsada térmicamente, que puede ocurrir en todos los tipos de piezómetros o pozos, independientemente del material de construcción, cuando el nivel freático o la carga hidráulica está cerca (<10 m) de la superficie del terreno. En este caso, las mediciones de campo (temperatura y registros de OD en los pozos) de un pozo de monitoreo en Bilthoven, Holanda, se combinan con el modelado analítico y numérico para investigar el papel de ambos procesos en la oxigenación de los pozos de agua subterránea anóxica. Los resultados de los modelos numéricos y analíticos muestran que tanto la permeabilidad como la convección pueden introducir oxígeno en pozos anóxicos en concentraciones cercanas a la saturación. En los datos de campo recolectados, la convección es la principal responsable de la intrusión de oxígeno hasta una profundidad de unos 12 m. La intrusión de oxígeno a través de convección y de permeación en los pozos de monitoreo y de bombeo de agua subterránea pueden influir en el muestreo y análisis, y pueden contribuir así a la obstrucción, dependiendo de las condiciones del lugar. La combinación de los datos campo y el modelado proporciona nuevos conocimientos sobre estos procesos, que pueden ser utilizados tanto para la toma de muestras de aguas subterráneas como para el diseño de bombeo de los pozos.缺氧含水层中地下水监测井和抽水井需要注意保持地下水没有溶解氧。在正确建造的监测井和抽水井中,两个过程仍然能把氧气带到缺氧的地下水中:(1) 氧气通过聚合物材料诸如硅树脂、PVC、 HDPE或者特氟龙的渗透;(2) 热源驱动的对流。当水位或者压力水头接近 (<10 m) 地表时,不管何种建筑材料,热源驱动的对流会出现在所有类型的测压计或者井中。在此,把从荷兰Bilthoven地区监测井得到的室外测量结果 (温度和溶解氧井记录) 与解析和数值模拟结合起来,研究两个过程对井中缺氧地下水氧化的作用。数值和解析模拟结果显示,渗透和对流可把氧气带入到缺氧经中,达到几乎饱和浓度。在收集的室外资料中, 大约12米的深度内,氧气进入水中主要是对流造成的。监测井和抽水井中通过对流和渗透的氧气进入可影响地下水采样 和分析,可有助于录井,这取决于现场条件。室外工作和模拟的结合对这些过程提供了新的认识,这些认识可用于地下水采样和抽水井设计。Poços de monitoramento e bombeamento instalados em aquíferos anóxicos requerem atenção para manter as águas subterrâneas livre de oxigênio dissolvido (OD). Mesmo em poços de monitoramento ou bombeamento devidamente construídos, dois processos podem introduzir oxigênio às águas subterrâneas anóxicas: (1) penetração/permeação de oxigênio através de materiais poliméricos como silicone, PVC, PEAD ou Teflon, e (2) convecção impulsionada termicamente, que pode ocorrer em todos os tipos de piezômetros ou poços, independentemente do material de construção, quando o nível freático ou carga de pressão for próximo (<10 m) à superfície do terreno. Neste trabalho, combinaram-se medições de campo (registros de temperatura e OD no poço) realizadas em poços de monitoramento em Bilthoven, Holanda, com modelagens analítica e numérica visando investigar o papel desempenhado por ambos processos na oxigenação das águas subterrâneas em poços. Os resultados das modelagens numérica e analítica mostram que tanto a penetração/permeação de oxigênio quanto a convecção podem introduzir oxigênio nos poços anóxicos até concentrações próximas à de saturação. Nos dados de campo coletados, a convecção é responsável principalmente pela intrusão de oxigênio até uma profundidade em torno de 12 m. A introdução de oxigênio por meio de convecção e penetração/permeação em poços de monitoramento e bombeamento podem influenciar amostras de água subterrânea e suas análises, e podem contribuir para a colmatação de poços, dependendo das condições locais. A combinação de dados de campo e modelagem fornecem novas perspectivas para com esses processos, os quais podem ser usados tanto para amostragem de água subterrânea quanto para projetar poços de bombeamento |
| Starting Page | 55 |
| Ending Page | 66 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 25 |
| Issue Number | 1 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2016-10-11 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Dissolved oxygen Numerical modeling Thermal convection Groundwater monitoring Hydrogeology Hydrology/Water Resources Geology Water Quality/Water Pollution Geophysics/Geodesy Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|