Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Kurungot, Sreekumar Kharul, Ulhas K Balan, Beena K Chaudhari, Harshal D |
| Copyright Year | 2013 |
| Abstract | Carbon nanofiber–RuO2–poly(benzimidazole) ternary hybrid electrode material which integrates dual wall decoration and interfacial area tuning for supercapacitor applications has been devised based on a simple approach. This is achieved by decorating RuO2 nanoparticles of size ca. 2–3 nm along the inner and outer walls of a hollow carbon nanofiber (CNF) support (F-20RuO2). In the next step, a proton conducting polymer, phosphoric acid doped polybenzimidazole (PBI-BuI), interface is created along the inner and outer surfaces of this material. A 103% increase in the specific capacitance is obtained for RuO2–PBI hybrid material as compared to that of F-20RuO2 at the optimum level of the polymer wrapping. Apart from the high specific capacitance, the RuO2–PBI hybrid materials exhibit enhanced rate capability and excellent electrochemical stability of 98% retention in the capacitance. Such a remarkably high activity can be primarily attributed to the efficient dispersion of active sites achieved by properly utilizing inner and outer surfaces of CNF. Apart from this, the facile routes for ion transport created as a result of PBI incorporation coupled with excellent interfacial contact between the RuO2 and the electrolyte resulting in the improved utilization of the active material also contribute to the improved activity. In addition to this, the synergistic effects of pseudocapacitive contribution from both the PBI-BuI and RuO2 also contribute to the redefined performance characteristics. |
| Starting Page | 2428 |
| Ending Page | 2436 |
| Page Count | 9 |
| File Format | HTM / HTML PDF |
| ISSN | 20462069 |
| Volume Number | 3 |
| Issue Number | 7 |
| Journal | RSC Advances |
| DOI | 10.1039/c2ra22776b |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Electrode Dispersion relation Polymer Ion Polybenzimidazole fiber Carbon nanofiber Electrolyte PBI Benzimidazole Supercapacitor Proton Electrochemistry Conductive polymer Capacitance CNF |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Chemical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|