Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Peng, Dengfeng Huang, Bolong Pan, Caofeng |
| Copyright Year | 2017 |
| Abstract | We unraveled the mechanisms of transition metal-doped mechanoluminescent materials through a case study of CaZnOS. We found that the native point defect levels in Cu or Mn-doped CaZnOS system acted as energy relay centers for luminescence energy transfer. In combination with native point defect levels, discussed in a previous study [Phys. Chem. Chem. Phys., 2016, 18, 25946], we found that phosphor luminescence belongs to two different mechanisms. For Cu-doping, it occurs by the path via the conduction band minimum to the Cu-t2g level of the 3d orbital localized in the band gap. The hole-drifting effect was found to support the reported red-shifting of the emission. Both reversible and irreversible mechanical quenching were attributed to the spatially separated electrons recombining with the hole localized on the Cu-t2g level within the gap at levels below or above respectively. For Mn-doping, this occurs by a collaborative luminescence assisted by native point defects, and the excited states of Mn2+ overlap with the conduction band edge. The coexistence of MnZn and MnCa was confirmed, but was relatively low in MnCa. The concentration quenching effect, as well as the red-shift of absorption, shows a strong correlation with native point defect levels and the relative position of the 4T1(4G) state for both MnZn and MnCa. Further simplified approximations were used for modeling such concentration quenching effects. |
| Starting Page | 1190 |
| Ending Page | 1208 |
| Page Count | 19 |
| File Format | HTM / HTML PDF |
| ISSN | 14639076 |
| Volume Number | 19 |
| Issue Number | 2 |
| Journal | Physical Chemistry Chemical Physics |
| DOI | 10.1039/c6cp07472c |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Native Point Luminescence Valence and conduction bands MnCa Band gap Redshift |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|