Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Xu, Linxu Hao, Yanjun Zhang, Jiajia Cui, Fang Cui, Tieyu Wang, Yan |
| Copyright Year | 2017 |
| Abstract | Herein, an autocatalytic route to fabricate dual metal ion-equipped organic/inorganic hybrid silica, an ideal precursor for multifunctional silica-based composites integrated with well-dispersed Ag and Co3O4 nanoparticles was demonstrated. Significantly, by rational selection of reactants, such dual metal ion-equipped organic/inorganic hybrid silica can be synthesized through successive spontaneous reactions under near neutral conditions without an additional catalyst. Both the Ag+ and Co2+ ions are introduced into silica by chemical bonds, which favor the formation of small-sized and well-dispersed Ag and Co3O4 nanoparticles without aggregation in the entire silica matrix. After calcination, multifunctional silica composites equipped with well-dispersed Ag and Co3O4 nanoparticles were obtained. The as-obtained silica composites, as indicated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), have a spherical morphology and smooth surface. TEM tests also reveal the well dispersed fashion of Ag and Co3O4 nanoparticles. In addition, the obtained Ag–Co3O4@SiO2 composites exhibit good catalytic performance in the reduction of methylene blue (MB) with NaBH4 as a reducing agent, and can be readily recycled by an external magnetic field due to their superparamagnetic properties. |
| Starting Page | 899 |
| Ending Page | 906 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 20403364 |
| Volume Number | 9 |
| Issue Number | 2 |
| Journal | Nanoscale |
| DOI | 10.1039/c6nr08309a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Transmission electron microscopy Calcination Superparamagnetism Sodium borohydride Autocatalysis Reducing agent Scanning electron microscope Magnetic field Silicon dioxide Composite material Methylene blue |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|