Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Joo, Jinho Lim, Jun Hyung Park, Geun Chul Hwang, Soo Min |
| Copyright Year | 2014 |
| Abstract | The incorporation of foreign elements into ZnO nanostructures is of significant interest for tuning the structure and optical and electrical properties in nanoscale optoelectronic devices. In this study, Ga-doped 1-D ZnO nanorods were synthesized using a hydrothermal route, in which the doping content of Ga was varied from 0% to 10%. The pn heterojunction diodes based on the n-type Ga-doped ZnO nanorod/p-type Si substrates were constructed, and the effect of the Ga doping on the morphology, chemical bonding structure, and optical properties of the ZnO nanorods was systematically investigated as well as the diode performance. With increasing Ga content, the average diameter of the ZnO nanorods was increased, whereas the amount of oxygen vacancies was reduced. In addition, the Ga-doped ZnO nanorod/p-Si diodes showed a well-defined rectifying behavior in the I–V characteristics and an improvement in the electrical conductivity (diode performance) by the Ga doping, which was attributed to the increased charge carrier (electron) concentration and the reduced defect states in the nanorods by incorporating Ga. The results suggest that Ga doping is an effective way to tailor the morphology, optical, electronic, and electrical properties of ZnO nanorods for various applications such as field-effect transistors (FETs), light-emitting diodes (LEDs), and laser diodes (LDs). |
| Starting Page | 1840 |
| Ending Page | 1847 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 20403364 |
| Volume Number | 6 |
| Issue Number | 3 |
| Journal | Nanoscale |
| DOI | 10.1039/c3nr04957d |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Electrical resistivity and conductivity Optoelectronics Gallium Extrinsic semiconductor Oxygen Hydrothermal synthesis Diode Charge carrier Laser Dopant Heterojunction |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|