Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Torbensen, Kristian Rossi, Federico Ristori, Sandra Abou-Hassan, Ali |
| Copyright Year | 2017 |
| Abstract | Chemical communication leading to synchronization and collective behaviour of dynamic elements, such as cell colonies, is a widespread phenomenon with biological, physical and chemical importance. Such synchronization between elements proceeds via chemical communication by emmision, interdiffusion and reception of specific messenger molecules. On a lab scale, these phenomena can be modeled by encapsulating an oscillating chemical reaction, which serves as a signal (information) sender/receiver element, inside microcompartments such as droplet emulsions, liposomes and polymersomes. Droplets can thus be regarded as single units, able to generate chemical messengers that diffuse in the environment and hence can interact with other compartments. The Belousov–Zhabotinsky (BZ) reaction is a well-known chemical oscillator largely used as a model for complex nonlinear phenomena, including chemical, physical and biological examples. When the BZ-reaction is encapsulated inside microcompartments, its chemical intermediates can serve as messengers by diffusing among different microcompartments, to trigger specific reactions leading to a collective behavior between the elements. The geometry and constitution of the diffusion pathways play an important role in governing the collective behaviour of the system. In this context, microfluidics is not only a versatile tool for mastering the encapsulation process of the BZ-reaction in monodisperse microcompartments, but also for creating geometries and networks with well defined boundaries. The individual compartments can be engineered with selected properties using different surfactants in the case of simple emulsions, or with specific membrane properties in the case of liposomes. Furthermore, it enables the arrangement of these microcompartments in various geometric configurations, where the diffusive coupling pathways between individual compartments are both spatially and chemically well-defined. In this tutorial paper, we review a number of articles reporting various approaches to generate networks of compartmentalized Belousov–Zhabotinsky (BZ) chemical oscillators using microfluidics. In contrast to biological cellular networks, the dynamical characteristics of the BZ-reaction is well-known and, when confined in microcompartments arranged in different configurations with a pure interdiffusive coupling, these communicative microreactors can serve to mimic various types of bio-physical networks, aiding to comprehend the concept of chemical communication. |
| Starting Page | 1179 |
| Ending Page | 1189 |
| Page Count | 11 |
| File Format | HTM / HTML PDF |
| ISSN | 14730197 |
| Volume Number | 17 |
| Issue Number | 7 |
| Journal | Lab on a Chip |
| DOI | 10.1039/c6lc01583b |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Dispersity Chemical reaction Neural oscillation Zhabotinsky Gene regulatory network Belousov Collective behavior Diffusion Microfluidics Molecular geometry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Nanoscience and Nanotechnology Biochemistry Bioengineering Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|