Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Li, Wanli Suganuma, Katsuaki Li, Cai-Fu Gao, Yue Koga, Hirotaka Nagao, Shijo Goya, Yusuke Wang, Yutao Zhang, Hao Jiu, Jinting Chen, Chuantong Hu, Dawei |
| Copyright Year | 2017 |
| Abstract | Submicron Cu particle ink was developed to successfully achieve highly reliable and highly conductive Cu patterns on low-cost, transparent, and flexible substrates by an optimized two-step sintering process involving low temperature heat-welding and subsequent flash light sinter-reinforcement. The Cu ink contains a special additive of the Cu–amino complex made from copper(II) formate and 2-amino-2-methyl-1-propanol solvent. Low temperature heat-welding promotes the decomposition of the Cu–amino complex into fresh metallic Cu particles, which as nano-welders can in situ weld those big submicron Cu particles. The subsequent flash light sintering further reinforces the connection between big Cu particles with the assistance of these active nano-welders and strengthens the adhesion between sintered Cu patterns and polymer substrates due to the local soft-effect. The achieved resistivities of sintered Cu patterns on polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and polyimide (PI) substrates are 26.5 μΩ cm, 15.9 μΩ cm and 7.2 μΩ cm at a low welding temperature of 140 °C for 10 min and subsequent flash light energies of 1080 mJ cm−2, 1273 mJ cm−2 and 2073 mJ cm−2, respectively, at which the same electrical properties cannot be obtained from either pure nano-Cu or submicron Cu particle ink as reported in previous research studies. Moreover, bending fatigue and oxidation-resistance tests indicate that the sintered Cu patterns have superior mechanical and environmental stability. Finally, flexible and foldable LED circuits and flexible dipole antennas were successfully fabricated to demonstrate the applicability of the sintered Cu patterns for printed electronic devices. It should be noted that this method opens a new way for making highly reliable and highly conductive Cu patterns on low-cost, transparent, and flexible substrates with big Cu particles instead of nanoparticles under a suitable sintering process, which may largely decrease the cost and enhance the application of Cu inks for flexible electronic devices. |
| Starting Page | 1155 |
| Ending Page | 1164 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 20507526 |
| Volume Number | 5 |
| Issue Number | 5 |
| Journal | Journal of Materials Chemistry C |
| DOI | 10.1039/c6tc04892g |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Submicron Cu Cu Sintering Copper Formic acid 1-Propanol Solvent Polymer Polyethylene terephthalate Polyethylene naphthalate Polyimide Welding Dipole |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|