Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Li, Baohua Lin, Zhiqun Tang, Linkai Yang, Quan-Hong Li, Yong Kaneti, Yusuf Valentino He, Yan-Bing Wang, Shuan Lv, Wei Kang, Feiyu |
| Copyright Year | 2017 |
| Abstract | Titanium oxide (TiO2) has attracted great interest as a promising anode material for lithium (Li) ion batteries (LIBs) and sodium (Na) ion batteries (SIBs). However, the key factors that dictate the Li-ion and Na-ion storage and transportation in TiO2 remain unclear. Herein, we report a facile hydrolysis route to crafting a variety of high tap-density TiO2 spheres with controllable size and hierarchical pores. The Li-ion and Na-ion storage properties based on these TiO2 spheres were systematically investigated. The pore distribution and the size of TiO2 spheres were found to exert profound influence on the Li-ion and Na-ion storage and transportation. The Li-ion storage and transportation in dense TiO2 spheres was dependent mainly upon the micropore distribution and volume and independent of the size of spheres. In contrast, the excellent Na-ion storage and transportation in TiO2 spheres was enabled by the loose structure with a large macroscopic pore volume and shortened Na-ion diffusion length. High tap-density TiO2 spheres (1.06 g cm−3) with superior Li-ion and Na-ion storage properties were produced, exhibiting a Li-ion storage specific capacity of 189 mA h g−1 at 1C and a high capacity retention of 88.1% after 100 cycles, and a Na-ion storage specific capacity of 184 mA h g−1 at 1C and capacity retention of 90.5% after 200 cycles. The ability to understand the critical factors controlling the Li-ion and Na-ion storage in high tap-density TiO2 spheres enables their implementation for practical applications in Li-ion and Na-ion batteries. |
| Starting Page | 4359 |
| Ending Page | 4367 |
| Page Count | 9 |
| File Format | HTM / HTML PDF |
| ISSN | 20507488 |
| Volume Number | 5 |
| Issue Number | 9 |
| Journal | Journal of Materials Chemistry A |
| DOI | 10.1039/c6ta08611j |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Li Titanium oxide Anode Lithium Ion Sodium Hydrolysis Diffusion |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Renewable Energy, Sustainability and the Environment Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|