Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Lv, Jing Li, Ying Wang, Shengping Zhan, Huimin Ma, Xinbin Huang, Shouying |
| Copyright Year | 2015 |
| Abstract | To investigate the role of Cu species in dimethyl ether (DME) carbonylation over Cu/H-MOR catalysts, ion-exchange with copper ammonia solution (Cu/H-M(x)) and solid state ion-exchange with CuCl (SSIE Cu/H-M(x)) methods were applied to prepare a series of samples with different Cu loadings. Compared to H-MOR, the reduced Cu/H-M(x) samples dramatically facilitated the conversion of DME, in which Cu+ and Cu0 species as well as Brønsted acid sites coexisted. Physical adsorption, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) were carried out to prove the negligible influence of the preparation processes on the textural and morphological properties of MOR. Fourier transform infrared (FTIR) spectroscopy, adsorption of pyridine, CO temperature programmed desorption (CO-TPD), and X-ray photoelectron spectroscopy (XPS) were employed to qualitatively and quantitatively explore the variation of both Brønsted acid sites and Cu species in 8-membered ring (8-MR) and 12-membered ring (12-MR) channels. With an increase of the Cu dopant, the amount of Cu0 increased gradually while Cu+ had no obvious regularity. The relationship between Cu0 and catalyst activity was established for Cu/H-M(x) catalysts. In addition, the formation of methyl acetate (MA) over SSIE Cu/H-M(x) catalysts decreased sharply with increasing Cu+ loading, which further excluded the promoting effect of Cu+ species present in MOR. |
| Starting Page | 4378 |
| Ending Page | 4389 |
| Page Count | 12 |
| File Format | HTM / HTML PDF |
| ISSN | 20444753 |
| Volume Number | 5 |
| Issue Number | 9 |
| Journal | Catalysis Science & Technology |
| DOI | 10.1039/c5cy00460h |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Infrared spectroscopy Spectroscopy Acid Dimethyl ether Fourier transform Photoemission spectroscopy CO Copper(I) chloride X-ray crystallography Ammonia Cu Carbonylation Transmission electron microscopy Pyridine Fourier Adsorption Magnetic resonance imaging Dopant Methyl acetate Copper X-ray photoelectron spectroscopy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Catalysis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|