Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Sabry, Mohamed-Nabil |
| Copyright Year | 2010 |
| Description | Author affiliation: Mansoura University, Egypt (Sabry, Mohamed-Nabil) |
| Abstract | Modeling conduction heat transfer in electronic systems has gained some maturity over the past 3 decades. Although new modeling challenges were associated with 3D stacked dies or packages, some modeling approaches were proposed to handle this rather complicated multiple heat source problem. An even newer problem has started to emerge related to this growing tendency towards exploiting the vertical direction. In fact cooling becomes more and more 3D also, in the sense intermediate micro-channels are proposed going between dies and or packages. This brings convection into play aside with convection in an intimate coupling, commonly called conjugate heat transfer. It is no longer possible to treat convection as an “external” phenomenon, to be modeled by a simple external resistance. In this lecture, fundamental aspects about conjugate heat transfer are revised to obtain a realistic model that avoids large errors that could have been encountered had we treated conduction and convection separately. Fundamental concepts are revised, going up to the notion of heat transfer coefficient in order to elaborate a better model of forced convection in its most general form. The new modeling strategy will build upon progress already realized in Compact Thermal Models (CTM) for conduction in complicated electronic systems. Advanced conduction CTM will be generalized to include convection as well. This will allow a better modeling of convection, but more important a homogeneous and coherent modeling of conjugate heat transfer. Cooling of electronic systems is continuously raising new challenges not only for innovative solutions, but also for modeling of new atypical cases. The higher frequency we ask for, the greater number of functionalities we require as well, both tend to increase heat flux densities to unprecedented levels in industrial applications. Densities higher than those of a nuclear reactor were already realized in electronic systems. We are heading towards densities of rocket nozzle. Complexity related to these high heat fluxes has many origins that will be addressed, in order to motivate subsequent discussions. A summary of recent advances in conduction modeling will be given before generalizing them to convection. Conjugate convection will be studied. |
| Starting Page | 7 |
| Ending Page | 7 |
| File Size | 319277 |
| Page Count | 1 |
| File Format | |
| ISBN | 9781612842684 |
| e-ISBN | 9781612842677 |
| DOI | 10.1109/THETA.2010.5766373 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2010-12-19 |
| Publisher Place | Egypt |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Content Type | Text |
| Resource Type | Synopsis |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|