Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Sugi, T. Tsuchiya, S. Nishida, S. Goto, Y. Tobimatsu, S. Nakamura, M. |
| Copyright Year | 2009 |
| Description | Author affiliation: Department of Electrical and Electronic Engineering, Saga University, Japan (Sugi, T.) || Department of Advanced Systems Control Engineering, Saga University, Japan (Tsuchiya, S.; Nakamura, M.) || Department of Occupational Therapy, International University of Health and Welfare, Fukuoka, Japan (Goto, Y.) || Department of Clinical Neurophysiology, Kyushu University, Fukuoka, Japan (Tobimatsu, S.) || Department of Information and Communication, Fukuoka Institute of Technology, Japan (Nishida, S.) |
| Abstract | Dominant rhythm in electroencephalographic (EEG) records is seen at the posterior to occipital region as a primary component of background activity during waking state with closed eyes and is decreased or disappeared by the exogenous factors such as visual stimuli to eyes and so on. Visual evoked potential (VEP) can also be seen in EEG at the posterior to occipital regions during photic stimulation (PS). Frequency components of VEP are depended upon the frequency of stimuli and that of dominant rhythm in case of healthy adult is around 10 Hz. Therefore, components of VEP and dominant rhythm are almost overlapped when the frequency of photo stimuli is near around 10 Hz. VEP component can be extracted from the background activity by using the averaging method, but the accurate estimation of dominant rhythm component in such condition has difficulties due to the overlapping of both components in frequency domain. Some of the authors have proposed the EEG model with Markov process amplitude (MPA EEG model) in the past. The MPA EEG model has possibilities to separate the components that construct the original EEG into each one in the frequency domain. In this study, component decomposition of VEP and dominant rhythm of recorded EEG was done by using the MPA EEG model. EEGs with PS were recorded from three healthy young adults. Five seconds continuous EEG time series with PS and without PS were selected from the original data, and were transferred to the periodogram information by the FFT method. Then, the model parameters were calculated. The initial values of model parameters were determined from the periodogram of raw EEG during PS, and were optimized by Fletcher-Powell method. In the original data under PS with 10 Hz, VEP component and dominant rhythm component were overlapped each other. Proposed method decomposed the original data into five components; first harmonic VEP, second harmonic VEP, dominant rhythm, slower noise and others. Characteristics for the depression of dominant rhythm and the amplitude of VEP were quantitatively analyzed from the decomposed component by the MPA EEG model. Effectiveness of the proposed decomposition method was also investigated. |
| Starting Page | 1 |
| Ending Page | 4 |
| File Size | 1578713 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781424433155 |
| DOI | 10.1109/ICCME.2009.4906614 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-04-09 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Control engineering Eyes Markov processes Rhythm Brain modeling Electroencephalography Frequency estimation Frequency domain analysis Power harmonic filters Neurophysiology |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|