Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Yanwei Xing Jie Wang Zhihong Zhao Yonghong Gao |
| Copyright Year | 2007 |
| Description | Author affiliation: Guanganmen Hospita Chinese Acad. of Med. Sci., Beijing (Yanwei Xing; Jie Wang; Zhihong Zhao) |
| Abstract | The prediction of survival of Coronary heart disease (CHD) has been a challenging research problem for medical society. The goal of this paper is to develop data mining algorithms for predicting survival of CHD patients based on 1000 cases .We carry out a clinical observation and a 6-month follow up to include 1000 CHD cases. The survival information of each case is obtained via follow up. Based on the data, we employed three popular data mining algorithms to develop the prediction models using the 502 cases. We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results indicated that the SVM is the best predictor with 92.1 % accuracy on the holdout sample artificial neural networks came out to be the second with91.0% accuracy and the decision trees models came out to be the worst of the three with 89.6% accuracy. The comparative study of multiple prediction models for survival of CHD patients along with a 10-fold cross-validation provided us with an insight into the relative prediction ability of different data. |
| Starting Page | 868 |
| Ending Page | 872 |
| File Size | 271539 |
| Page Count | 5 |
| File Format | |
| ISBN | 0769530389 |
| DOI | 10.1109/ICCIT.2007.204 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2007-11-21 |
| Publisher Place | South Korea |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Support vector machines Databases Cardiac disease Support vector machine classification Artificial neural networks Predictive models Data mining Application software Medical diagnostic imaging Classification tree analysis |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|