Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Manessis, D. Aschenbrenner, R. Ostmann, A. Reichl, H. |
| Copyright Year | 2008 |
| Description | Author affiliation: Microperipheric Res. Center, Tech. Univ. Berlin, Berlin, Germany (Manessis, D.; Reichl, H.) || Fraunhofer Inst. for Reliability & Microintegration (IZM) Berlin, Berlin, Germany (Aschenbrenner, R.; Ostmann, A.) |
| Abstract | Stencil printing of solder paste remains the technology route of choice for flip chip bumping because of its economical advantages over traditionally costly evaporation and electroplating processes. Fraunhofer IZM printing group has developed stencil printing processes to meet the current trends in wafer bumping roadmaps with continuous increase of I/O's and reduced bumping pitch. Mainstream wafer bumping has been performed by using innovative Type 5 (15-25μm) and Type 6 (5-15μm) pastes with both Sn-Pb and Pb-free compositions from 300 μm up to 100 μm pitches for peripheral pad configurations and up to 120 μm for area array configurations. At R&D level, IZM has advanced stencil printing very close to its technological limits at pitches even down to 50 μm. Innovative electroformed and laser-cut with nano-treatment stencils have been manufactured with an extreme thinness of 20 μm for bumping wafers at Ultra fine pitches (UFP) of 100 μm, 80 μm and 60 μm. Specifically, for 100 μm pitch bumping, both type 7 (2-11μm) and type 6 (5-15μm) pastes of eutectic composition Sn63/Pb37 have been successfully employed. Bumping using 25 μm electroformed stencil thickness has yielded bump heights of 42.3±3.8μm and 43.6±3.5μm for type 7 and type 6 pastes, respectively. A newly prototype developed type 8 paste (2-8μm) has been used for the first time to bump chips with peripheral contacts at 80 μm and 60 μm pitch. Bumping at 80 μm pitch with nano-treated laser-cut stencil has yielded bumps of 28 μm in height. For bumping at 60 μm pitch, a 20 μm thick electroformed stencil was used with 35 μmx80 μm oblong apertures. Printing at 60 μm pitch has yielded very promising results and has proved the capability of electroformed technology to manufacture accurate and robust thin stencils. The bump height at 60 μm pitch was measured to be 28 ±3 μm. Paste-in-Resist technology lias been developed as an alternative to stencils in order to overcome the manufacturing difficulties of making extremely small apertures. Paste is printed in resist apertures which have been opened by photolithographic processes. In this way, bumping has been demonstrated up to 50 μm pitches. Complimentary to stencil printing processes, IZM has developed balling technologies up to 400 μm pitch up to 8" wafers with a thickness of 150 μm. Solder balling can be achieved either by "perform ball print" using conventional stencil printers with specially designed stencils or by "ball drop" techniques. Balling technologies have demonstrated the application of 300 μm and 250 μm Sn-Pb and Pb-free balls at respective area array pitches of 500 μm and 400 μm, the main I/O pitches for WL-CSP bumping. |
| Starting Page | 1 |
| Ending Page | 6 |
| File Size | 2097440 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781424433926 |
| ISSN | 10898190 |
| e-ISBN | 9781424433933 |
| DOI | 10.1109/IEMT.2008.5507876 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2008-11-04 |
| Publisher Place | Malaysia |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Flip chip Packaging Printing Manufacturing Apertures Tin Costs Optical arrays Research and development Prototypes wafer balling wafer bumping stencil printing ultra fine pitch |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|