Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Ramesh, S. Huang, C. Shurong Liang Giannelis, E.P. |
| Copyright Year | 1999 |
| Description | Author affiliation: Dept. of Mater. Sci. & Eng., Cornell Univ., Ithaca, NY, USA (Ramesh, S.) |
| Abstract | Despite the huge potential, integral passives form less than 3% of the replaceable discrete components. A major obstacle in bridging this gap has been the absence of a wider choice of materials that would conform to stringent performance requirements. Epoxy-ceramic composite dielectrics have been investigated in recent time towards the fabrication of integral thin film capacitors due to their compatibility with processing conditions for printed wire boards (PWB). Though many investigations in recent past have focussed on the dielectric properties of epoxy-ceramic composites it is surprising that investigations on the interfacial effects did not receive the attention they deserve. These effects are even more pronounced in nanocomposites as the influence of the interface turns dominant with decreasing size of the dispersed ceramic phase. Functionalization of barium titanate (BTO) nanoparticles with an organic silane was shown to improve the dispersion of the particles in the epoxy matrix and hence the rheological properties. The dielectric properties of a nanocomposite with a surface modified ceramic dispersant are likely influenced in two ways (a) change in the microstructure of the composite brought about by the improved dispersibility and (b) change in the interfacial or Maxwell-Wagner-Sillars (MWS) polarization in the heterogeneous phase. Fundamental understanding of such influences is important in the design of polymer-inorganic nanocomposites. These influences were investigated in the case of epoxy as well as polyvinylidene fluoride (PVDF) matrices with a dispersion of barium titanate nanoparticles at different volume fractions. Dielectric properties such as relative permittivity and impedance were investigated with frequencies up to 10/sup 7/ Hz. The organic modification of the interface was found to significantly influence the processibility and dielectric properties. |
| Starting Page | 99 |
| Ending Page | 104 |
| File Size | 690976 |
| Page Count | 6 |
| File Format | |
| ISBN | 0780352319 |
| ISSN | 05695503 |
| DOI | 10.1109/ECTC.1999.776071 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 1999-06-01 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Transistors Capacitors Dielectric thin films Nanocomposites Ceramics Barium Titanium compounds Nanoparticles Active matrix organic light emitting diodes Dielectric materials |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|