Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Hong Liu Leray, D. Colin, S. Pons, P. |
| Copyright Year | 2015 |
| Description | Author affiliation: Malaysia Campus, Univ. of Southampton, Iskandar Puteri, Malaysia (Hong Liu) || LAAS, Univ. de Toulouse, Toulouse, France (Pons, P.) || Inst. Clement Ader, Univ. de Toulouse, Toulouse, France (Leray, D.; Colin, S.) |
| Abstract | Contamination and oxidation are inevitable in contact surfaces, especially for micro contact under low load (μN-mN). They are considered as major causes for a high contact resistance, and can lead to the failure of a contact. However, as the film formation is a complex phenomenon, it is difficult to accurately observe and characterize the film properties. In this paper, a finite element model of nickel oxide film is developed for Au-Ni contact of MEMS switches. Considering the fact that the electrical contact area is only a portion of the mechanical contact area, a so-called `nano-spots' model is developed: multiple small conductive spots are scattered on a large mechanical contact asperity, and ultrathin oxide film is located around the nano-spots. The sizes of the electrical spots and the mechanical asperity are deduced from the measured electrical resistance and a mechanical contact modeling, respectively. The simulations results show a good agreement with the experimental results. This model allows us to determine some possible geometrical configurations of contact surfaces that lead to the measured contact resistance in real devices. |
| Starting Page | 266 |
| Ending Page | 272 |
| File Size | 759733 |
| Page Count | 7 |
| File Format | |
| e-ISBN | 9781467393416 |
| DOI | 10.1109/HOLM.2015.7355108 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2015-10-11 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Films Finite element analysis Surface resistance Contact resistance Nickel finite element modeling MEMS switches electrical contact oxide film |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|