Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Srinivasan, S. Bhudiya, K. Ramanarayanan, R. Babu, P.S. Jacob, T. Mathew, S.K. Krishnamurthy, R. Errgauntla, V. |
| Copyright Year | 2013 |
| Description | Author affiliation: Intel India Pvt. Ltd., Bangalore, India (Srinivasan, S.; Bhudiya, K.; Ramanarayanan, R.; Babu, P.S.; Jacob, T.; Errgauntla, V.) || Circuits Res. Lab., Intel Corp., Hillsboro, OR, USA (Mathew, S.K.; Krishnamurthy, R.) |
| Abstract | Floating point multiply-accumulate (FPMAC) unitis the backbone of modern processors and is a key circuit determining the frequency, power and area of microprocessors. FPMAC unit is used extensively in contemporary client microprocessors, further proliferated with ISA support for instructions like AVX and SSE and also extensively used in server processors employed for engineering and scientific applications. Consequently design of FPMAC is of vital consideration since it dominates the power and performance tradeoff decisions in such systems. In this work we demonstrate a novel FPMAC design which focuses on optimal computations in the critical path and therefore making it the fastest FPMAC design as of today in literature. The design is based on the premise of isolating and optimizing the critical path computation in FPMAC operation. In this work we have three key innovations to create a novel double precision FPMAC with least ever gate stages in the timing critical path: a) Splitting near and far paths based on the exponent difference (d=Exy-Ez = {-2, -1, 0, 1} is near path and the rest is far path), b) Early injection of the accumulate add for near path into the Wallace tree for eliminating a 3:2compressor from near path critical logic, exploiting the small alignment shifts in near path and sparse Wallace tree for 53 bit mantissa multiplication, c) Combined round and accumulate add for eliminating the completion adder from multiplier giving both timing and power benefits. Our design by premise of splitting consumes lesser power for each operation where only the required logic for each case is switching. Splitting the paths also provides tremendous opportunities for clock or power gating the unused portion (nearly 15-20%) of the logic gates purely based on the exponent difference signals. We also demonstrate the support for all rounding modes to adhere to IEEE standard for double precision FPMAC which is critical for employment of this design in contemporary processor families. The demonstrated design outperforms the best known silicon implementation of IBM Power6 [6] by 14% in timing while having similar area and giving additional power benefits due to split handling. The design is also compared to best known timing design from Lang et al. [5] and outperforms it by 7% while being 30% smaller in area than it. |
| Sponsorship | IEEE Comput. Soc. |
| Starting Page | 17 |
| Ending Page | 24 |
| File Size | 355392 |
| Page Count | 8 |
| File Format | |
| ISBN | 9781467356442 |
| ISSN | 10636889 |
| DOI | 10.1109/ARITH.2013.32 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2013-04-07 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Adders Logic gates Hardware Microprocessors Delays Program processors IEEE Rounding Double precision floating point multiply-accumulate Normalization Wallace tree |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|