Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Miettinen, J. Kaija, K. Mantysalo, M. Mansikkamaki, P. Kuchiki, M. Tsubouchi, M. Ronkka, R. Hashizume, K. Kamigori, A. |
| Copyright Year | 1999 |
| Abstract | Ever increasing demand for high-performance, miniaturized, low-cost, and more environmentally conscious targets set high requirements for electronics packaging and manufacturing. Digital drop-on-demand printing of materials is an interesting approach for electronics manufacturing allowing several advantages compared to subtractive methods to manufacture electronics. Additive processing by means of digital printing offers new possibilities to electronics integration, by enabling direct writing on even nonplanar surfaces, and interconnection without specific substrate for components. A module utilizing additive deposition of conductive metallic nanoparticle inks and dielectrics using inkjet printing was designed. Conventional laminate-based or ceramic interconnection substrate, i.e., printed wiring boards was not used as often in electronics modules. Chip-first modules made using a particular encapsulation method were constructed of molded substrate with embedded components and without any wiring. The molding process and the characteristics of molding material were examined using real product samples, material characterization methods, and modeling. The interconnection process using inkjettable metallic nanoparticle and dielectric inks set strict requirements for molding materials; the surface characteristics should be suitable for the inkjetting of conductive and dielectric materials. Additionally, material must withstand the harsh process conditions that include several heating cycles in relatively high temperatures for organic materials. The surface characteristics of the molding material should be adjusted to ensure good control of inkjetted fluids on a surface enabling high-yield inkjetting of fine-pitch patterns. Furthermore, the mechanical properties of molding material and molding material surface have an effect on the interconnection process yield and reliability of the inkjetted lines and interconnections. The characteristics of molded modules working as substrate for additively processed patterns is a crucial role in the manufacturing of a highly integrated printed module. |
| Sponsorship | IEEE Components, Packaging, and Manufacturing Technology Society |
| Starting Page | 293 |
| Ending Page | 301 |
| Page Count | 9 |
| File Size | 1262592 |
| File Format | |
| ISSN | 15213331 |
| Volume Number | 32 |
| Issue Number | 2 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-06-01 |
| Publisher Place | U.S.A. |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Dielectric materials Dielectric substrates Conducting materials Manufacturing Printing Additives Ink Wiring Organic materials Electronics packaging system-in-package (SiP) Dielectric ink inkjet (IJ) nanoparticle ink printable electronics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|