Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Demirci, M.U. Nguyen, C.T.-C. |
| Copyright Year | 1992 |
| Abstract | Substantial reductions in vibrating micromechanical resonator series motional resistance Rx have been attained by mechanically coupling and exciting a parallel array of corner-coupled polysilicon square plate resonators. Using this technique with seven resonators, an effective Rx of 480 Omega has been attained at 70 MHz, which is more than 5.9X smaller than the 2.82 kOmega exhibited by a stand-alone transverse-mode corner-supported square resonator, and all this achieved while still maintaining an effective Q>9000. This method for Rx-reduction is superior to methods based on brute force scaling of electrode-to-resonator gaps or dc-bias increases, because it allows a reduction in Rx without sacrificing linearity, and thereby breaks the Rx versus dynamic range tradeoff often seen when scaling. This paper also compares two types of anchoring schemes for transverse-mode square micromechanical resonators and models the effect of support beam parameters on resonance frequency |
| Sponsorship | IEEE Electron Devices Society American Society of Mechanical Engineering (ASME) |
| Starting Page | 1419 |
| Ending Page | 1436 |
| Page Count | 18 |
| File Size | 3637934 |
| File Format | |
| ISSN | 10577157 |
| Volume Number | 15 |
| Issue Number | 6 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2006-12-01 |
| Publisher Place | U.S.A. |
| Access Restriction | One Nation One Subscription (ONOS) |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Microcavities Micromechanical devices Linearity Impedance Radio frequency Resonance Wireless communication Dynamic range Acoustic beams Resonant frequency square plate Array impedance mechanical coupling micromechanical resonator motional resistance quality factor resonator radio frequency (RF) microelectromechanical systems (MEMS) |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanical Engineering Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|