Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Zhang, Jingzhou Ovaert, Timothy |
| Copyright Year | 2008 |
| Abstract | Damage results in a loss of material continuity, which distinguishes it from other types of material degradation. The loss of continuity can have an adverse effect on mechanical properties, and may be manifested in the form of cracks and/or voids. Bone tissue, as a composite material, contains voids and other non-homogeneities that are naturally occurring and distinct from damage. However, when subjected to mechanical loading, such as indentation, further damage accumulation may occur. Figure 1 shows a cross-section of a bovine cortical bone specimen after high-load conical indentation to a depth of 300 μm, resulting in a large permanently deformed region. Nanoindentation, using a Berkovich tip at 10 mN maximum load, was then performed at numerous locations within three defined damage “zones”. Zone 1 is adjacent to the bottom of the indent, defined at 25% of the maximum indent depth. Zones 2 and 3 extend further away, both scaled as a function of the indentation depth, d. Figure 2 shows the variation in Young’s modulus in the three damage zones, averaged over approximately 25 indents per zone. The data suggest that local changes in mechanical properties may occur as a result of compaction of voids or cracks. The purpose of this work, therefore, is to investigate the application of a plastic-damage model for simulation of bone nano- and micro-scale indentation behavior. |
| Sponsorship | Bioengineering Division |
| Starting Page | 15 |
| Ending Page | 16 |
| Page Count | 2 |
| File Format | |
| ISBN | 9780791843215 |
| DOI | 10.1115/SBC2008-192795 |
| Volume Number | ASME 2008 Summer Bioengineering Conference, Parts A and B |
| Conference Proceedings | ASME 2008 Summer Bioengineering Conference |
| Language | English |
| Publisher Date | 2008-06-25 |
| Publisher Place | Marco Island, Florida, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Microscale devices Nanoindentation Mechanical properties Fracture (materials) Stress Manganese (metal) Compacting Young's modulus Materials degradation Composite materials Simulation Bone Damage |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|