Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Tiku, Sanjay Piazza, Mark Semiga, Vlado John, Binoy Dinovitzer, Aaron |
| Copyright Year | 2018 |
| Abstract | Pipeline design and integrity management programs are employed to ensure reliable and efficient transportation of energy products and prevent pipeline failures. One of the failure modes that has received attention recently is pipeline fatigue due to pressure cycling in liquid pipelines, promoting through wall cracking and the release of product. Being able to estimate the leakage rate and/ total release volume are important in evaluating the consequence of developing a through wall crack, operational responses when incidents occur, and remedial action strategies and timelines. Estimates of leak rates can be used in pipeline system threat and risk assessment, evaluation of leak detection system sensitivity, development of Emergency Response Plans and strategies, and post-event evaluation. Fracture mechanics techniques consider the response of crack-like features to applied loading such as internal pressure, including estimation of crack mouth opening. Considering the differential pressure across the pipe wall and the crack opening area, estimated from the crack mouth opening, the flow of fluid through the crack can be conservatively estimated. To understand the conservatism of this analytical estimate of leakage rate, full-scale testing has been completed to evaluate the leakage rate through dent fatigue cracks of differing lengths under a range of internal pressures, and compare the empirical measured results to the analytical/theoretical estimates. The test procedure employed cyclic internal pressure loading on an end-capped pipe with a dent to grow fatigue cracks through the pipe wall thickness. Once a through wall crack was established, the internal pressure was held constant and the leakage rate was measured. After measuring the leakage rate, cyclic loading was employed to grow the crack further and repeat the leakage rate measurement with the increased crack length. The results of this experimental trial illustrate that the tight fatigue crack resulted in a discontinuous relationship between leakage rate and pipe internal pressure. Measureable leakage did not occur at low pipe internal pressures and then increased in a nonlinear trend with pressure. These results illustrate that a liquid pipeline with a through wall fatigue crack operating at a low internal pressure, or one having taken a pressure reduction, can have low leakage rates. The data and results presented in this paper provide a basis for an improved understanding and describing the leakage rate estimates at pipeline fatigue cracks, and providing insights into leakage rates and how to conservatively estimate them for fatigue crack consequence evaluation. |
| Sponsorship | Pipeline Division |
| File Format | |
| ISBN | 9780791851876 |
| DOI | 10.1115/IPC2018-78716 |
| Volume Number | Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines |
| Conference Proceedings | 2018 12th International Pipeline Conference |
| Language | English |
| Publisher Date | 2018-09-24 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Cracking (materials) Fracture mechanics Pipelines Emergency response Fatigue Fracture (materials) Wall thickness Pressure Flow (dynamics) Transportation systems Fracture (process) Fluids Pipeline systems Risk assessment Pipes Piping design Fatigue cracks Failure Failure mechanisms Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|