Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Smith, Michael Cronjaeger, Stefan Ershad, Navid Nickle, Randy Peussner, Matthias |
| Copyright Year | 2018 |
| Abstract | Effective integrity management of a corroded pipeline requires a significant quantity of data. Common data sources include in-line inspection (ILI), process monitoring, or external surveys. The key challenge for an integrity engineer is to leverage the data to understand the level of corrosion activity along the pipeline route, and make optimal decisions on future repair, mitigation and monitoring. This practice of gaining business insights from historical datasets is often referred to as ‘data analytics’. In this paper, a single application of data analytics is investigated — that of improving the estimation of corrosion growth rates (CGRs) from ILI data. When two or more sets of ILI data are available for the same pipeline, a process known as ‘box matching’ is typically used to estimate CGRs. Corresponding feature ‘boxes’ are linked between the two ILIs and a population of CGRs is generated based on changes in reported depth. While this is a well-established technique, there are uncertainties related to ILI sizing, detection limitations, and data censoring. Great care is required if these uncertain CGRs are used to predict future pipeline integrity. A superior technique is ‘signal matching’, which involves the direct alignment, normalization and comparison of magnetic flux leakage (MFL) signals. This delivers CGRs with a higher accuracy than box matching. However, signal matching is not always feasible (e.g. when conducting a cross-vendor or cross-technology comparison). When box matching is the only option for a pipeline, there is great value in understanding how the box matching CGRs can be improved in order to more closely resemble those from signal matching. This limits the extent to which uncertainties are propagated into any subsequent analyses, such as repair plan generation or remaining life assessment. Given their relative accuracy, signal matching CGRs can be utilized as a ‘ground truth’ against which box matching results can be validated. This is analogous to the ILI verification process, where in-field measurements (e.g. with laser scan) are used to validate feature depths reported by an ILI. By extension, a model to estimate CGRs following a box matching analysis can be trained with CGRs from a signal matching analysis, using supervised machine learning. The outcome is an enhanced output from box matching, which more closely resembles the true state of corrosion growth in a pipeline. Through testing on real pipeline data, it is shown that this new technique has the potential to improve pipeline integrity management decisions and support economical, safe and compliant operation. |
| Sponsorship | Pipeline Division |
| File Format | |
| ISBN | 9780791851869 |
| DOI | 10.1115/IPC2018-78364 |
| Volume Number | Volume 1: Pipeline and Facilities Integrity |
| Conference Proceedings | 2018 12th International Pipeline Conference |
| Language | English |
| Publisher Date | 2018-09-24 |
| Publisher Place | Calgary, Alberta, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Process monitoring Magnetic flux Uncertainty Pipelines Pipeline integrity management Inspection Maintenance Corrosion Lasers Remaining life assessment Machine learning Signals Engineers Performance Pipeline integrity Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|