Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Lee, Ming-Tsang Yang, Kai-Shing |
| Copyright Year | 2014 |
| Abstract | In this study, effects of the dimensions and the thermal conductivity of the substrate on the heat transfer characteristics of a LED module are investigated. The total thermal resistance corresponding to a LED module operating at different power levels is measured using a thermal resistance testing system (T3Ster®). In addition, a novel graphite composite material with anisotropic thermal conductivities is used as the substrate of the LED module to investigate the effects of directionally dependent thermal conductivities on the thermal spreading resistance. Furthermore, a finite element method numerical simulation is carried out to analyze the heat transfer phenomena in the LED module. It is found that, for the current experimental conditions, the importance of the thermal spreading resistance effect increases with decreasing substrate thickness and/or increasing input power of the LED module, which corresponds to an increase in the total thermal resistance and correspondingly a higher chip temperature. Experimental and numerical results show that the thermal spreading resistance and thus the chip temperature can be reduced by increasing the substrate thickness or by utilizing materials with high lateral thermal conductivities for the substrate. In consequence, for LED modules with the same substrate thickness, using graphite composite to replace aluminum as the substrate material reduces the spreading resistance by nearly fourteen percent in the current study. |
| File Format | |
| ISBN | 9780791849569 |
| DOI | 10.1115/IMECE2014-36624 |
| Volume Number | Volume 8B: Heat Transfer and Thermal Engineering |
| Conference Proceedings | ASME 2014 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2014-11-14 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Computer simulation Aluminum Dimensions Finite element methods Light-emitting diodes Composite materials Thermal resistance Anisotropy Graphite Thermal conductivity Heat transfer Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|