Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Chandraseker, Karthick Patro, Debdutt Nayak, Ajaya Quek, Shu Ching Chandra, S. Yerramalli |
| Copyright Year | 2010 |
| Abstract | Composite material usage in primary load bearing structures has continued to expand in aerospace, auto and wind energy industries. Large composite part thicknesses in some load bearing applications lead to defects during manufacturing. Typically, these defects are in the form of fiber waves, voids and delaminations. It is well known in the composite literature that composite compressive strength is a strong function of fiber alignment, and fiber waviness can cause failure due to fiber microbuckling and kinking or failure by splitting at the fiber/resin interface. A detailed micromechanical analysis of these wavy defects is needed to estimate the strength reductions due to presence of wavy defects in thick uni-directional (UD) laminates. For example, real composite part thicknesses in industrial applications are in the range of 40 mm-60 mm while individual fiber and resin layers are only a few microns in thickness. Hence, micromechanics finite element (FE) models involving individual layers require an enormous number of elements, which, in addition, scales poorly with the part thickness. Earlier studies on the effect of fiber waviness have focused on simplified homogenized models to study the effect of fiber waviness. However, such models cannot resolve local details such as inter-layer stresses that initiate resin yielding. In the present work, two modeling approaches are investigated — (i) a micromechanics approach in which individual fiber and resin layers are explicitly modeled, and (ii) a tow-level approach in which the fiber and resin properties are homogenized to generate effective properties of a tow. It is demonstrated that the two approaches lead to identical predictions of peak load for identical coupon dimensions. It is also shown that the peak compressive load plateaus beyond a certain value of coupon thickness. This information enables the modeling and testing of an actual thick part using a coupon of greatly reduced thickness and hence smaller number of elements in the computational model without compromising on the details afforded by a micromechanical model. |
| Starting Page | 519 |
| Ending Page | 525 |
| Page Count | 7 |
| File Format | |
| ISBN | 9780791844465 |
| DOI | 10.1115/IMECE2010-38894 |
| Volume Number | Volume 9: Mechanics of Solids, Structures and Fluids |
| Conference Proceedings | ASME 2010 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2010-11-12 |
| Publisher Place | Vancouver, British Columbia, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Bearings Peak load Dimensions Compressive strength Laminates Modeling Waves Stress Aerospace industry Fibers Composite materials Wind energy Finite element analysis Manufacturing Resins Delamination Failure Micromechanics (engineering) Testing |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|