Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Singh, Gaurav Sutrakar, Vijay Kumar Mahapatra, D. Roy |
| Copyright Year | 2010 |
| Abstract | Intermetallic alloys of Ni-Al have important applications in high temperature anti-corrosive coatings, engine and turbine related materials, and shape memory devices. Predicting failure behavior of these materials is difficult using purely continuum model, since several of the material constants are complicated functions of micro and nano-scale details. This includes solid-solid phase transformation. In the present paper, a framework for analyzing fracture in two-dimensional planar domain is developed using a molecular dynamic (MD) simulation and extended finite element method (XFEM). The framework is then applied to simulate fracture in Ni-Al thin-film. Effect of Ni Al crystallites of various sizes on the mechanical properties is analyzed using direct MD simulations. Initiation and growth of crack under slow (quasi-static) tensile loading in mode-I condition is considered. Mechanical properties at room temperature are estimated via MD simulations, which are further used in the XFEM at the continuum scale. A cohesive zone model for the macroscopic XFEM model is implemented, which directly bridges the molecular length-scale via MD framework. Numerical convergence studies are reported for mode-I crack in initially single crystal B2 Ni-Al thin film. |
| Starting Page | 543 |
| Ending Page | 551 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791844465 |
| DOI | 10.1115/IMECE2010-37868 |
| Volume Number | Volume 9: Mechanics of Solids, Structures and Fluids |
| Conference Proceedings | ASME 2010 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2010-11-12 |
| Publisher Place | Vancouver, British Columbia, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Bridges (structures) Temperature Intermetallic compounds Alloys Crystals Mechanical properties Molecular dynamics Nanoscale phenomena Fracture (materials) Molecular dynamics simulation High temperature Coatings Finite element methods Modeling Phase transitions Engines Thin films Simulation Shapes Failure Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|