Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Ding, Changsong Soni, Gaurav Bozorgi, Payam Piorek, Brian Carl, D. Meinhart Noel, C. Macdonald |
| Copyright Year | 2008 |
| Abstract | We are developing innovative heat pipes based on Nano-Structured Titania (NST) with a potential for high heat carrying capacity and high thermal conductivity. These heat pipes have a flat geometry as opposed to a cylindrical geometry found in conventional heat pipes. The flatness will enable a good contact with microprocessor chips and thus reduce the thermal contact resistance. We refer to it as a Thermal Ground Plane (TGP) because of its flat and thin geometry. It will provide the ability to cool the future generations of power intensive microprocessor chips and circuit boards in an efficient way. It also brings the potential to function in high temperature (>150°C) fields because of its high yield strength and compatibility [1]. The TGP is fabricated with Titanium. It adopts the recently developed high aspect ratio Ti processing techniques [2] and laser packaging techniques. The three main components of the TGP are 1) a fine wick structure based on arrays of high aspect ratio Ti pillars and hair like structures of Nano-Structured Titania (NST), 2) A shallow Ti cavity welded onto the wick structure and 3) the working fluid, water, sealed between the cavity and the wick. The heat carrying capacity and the thermal conductivity of a heat pipe are generally determined by the speed of capillary flow of the working fluid through its wick. The TGP wick has the potential to generate high flow rates and to meet the growing challenges faced by electronics cooling community. The TGP wick structure, developed by etching high aspect ratio pillars in a titanium substrate and growing nano scale hairs on the surface of the pillars, is super hydrophilic and capable of wicking water at velocities ∼ 10−2 m/s over distances of several centimeters. The thermal conductivity of the current TGP device was measured to be k = 350 W/m·K. The completed TGP device has the potential of attaining a higher conductivity by improving the wicking material and of carrying higher power density. Washburn equation [3] for dynamics of capillary flow has been employed to explain the results of our experiments. The experiment shows a good agreement with Washburn equation. |
| Starting Page | 1045 |
| Ending Page | 1051 |
| Page Count | 7 |
| File Format | |
| ISBN | 9780791848746 |
| DOI | 10.1115/IMECE2008-68967 |
| e-ISBN | 9780791838402 |
| Volume Number | Volume 13: Nano-Manufacturing Technology; and Micro and Nano Systems, Parts A and B |
| Conference Proceedings | ASME 2008 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2008-10-31 |
| Publisher Place | Boston, Massachusetts, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Flat heat pipes Water Power density Computer cooling Contact resistance Etching High temperature Flow (dynamics) Geometry Integrated circuits Cavities Fluids Heat Printed circuit boards Dynamics (mechanics) Lasers Heat pipes Titanium Packaging Thermal conductivity Yield strength Columns (structural) |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|