Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Maleke, Caroline Luo, Jianwen Assimina, A. Pelegri Elisa, E. Konofagou |
| Copyright Year | 2007 |
| Abstract | Mechanical changes in breast tissues as a result of cancer are usually detected through palpation by the physician and/or self examination. However, physicians are unable to palpate most masses under 1 cm in diameter and microscopic diseases. The goal of our study is to introduce the application of the Harmonic Motion Imaging (HMI), an acoustic radiation force technique, for reliable sensitive tumor detection and real-time monitoring of tumor ablation. Here, we applied the HMI technique using a single-element Focused Ultrasound (FUS) transducer. Due to the highly localized and harmonic nature of the response, the motion characteristics can be directly linked to the regional tissue modulus. In this experiment, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) probe, was used. The FUS beam was further modulated by a low AM continuous wave at 25 Hz. A pulser/receiver was used to drive the pulse-echo transducer at a Pulse Repetition Frequency (PRF) of 5.4 kHz. The radio-frequency (RF) signals were acquired using a standard pulse echo technique. The intensity amplitudes of the FUS beam at the focus (Ispta) were 231 W/cm2 for tumor detection and 1086 W/cm2 for FUS ablation. An analog bandpass filter was used to remove the spectrum of the FUS beam prior to displacement estimation. The resulting axial tissue displacement (i.e., HMI displacement) was estimated using an RF-based speckle tracking technique based on 1D cross-correlation. For tumor mapping, a harmonic radiation force was applied using a 2D raster-scan technique. The 3D HMI image was obtained by combining multiple 2D planes at different depths. The 2D and 3D HMI images in ex vivo breast tissues could detect a benign tumor (2×5×5mm3) surrounded by normal tissue, and a malignant tumor (8×7×5mm3) embedded in glandular and fat tissues. For FUS therapy, temperature measurements and RF signals were acquired during thermal ablation. HMI images during FUS ablation showed lower displacements, indicating thus tissue hardening due to lesion formation at temperatures higher than 50°C. A finite-element model (FEM) simulation was also used to analyze the findings of the experimental results. In conclusion, this technique demonstrates feasibility of the HMI technique for tumor detection and characterization, as well as real-time monitoring of tissue ablation based on the associated tissue elasticity changes. |
| Starting Page | 127 |
| Ending Page | 133 |
| Page Count | 7 |
| File Format | |
| ISBN | 0791842967 |
| DOI | 10.1115/IMECE2007-42294 |
| e-ISBN | 0791838129 |
| Volume Number | Volume 2: Biomedical and Biotechnology Engineering |
| Conference Proceedings | ASME 2007 International Mechanical Engineering Congress and Exposition |
| Language | English |
| Publisher Date | 2007-11-11 |
| Publisher Place | Seattle, Washington, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Temperature Biological tissues Elasticity Acoustics Waves Echoes Hardening Finite element model Filters Imaging Harmonic motion Signals Probes Ultrasound Transducers Mechanical properties Displacement Diseases Patient treatment Temperature measurement Ablation (vaporization technology) Radiation (physics) Simulation Tumors Cancer |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|