Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Montenegro, G. Torre, A. Della Cerri, T. Onorati, A. |
| Copyright Year | 2012 |
| Abstract | Increasing demands on the capabilities of engine simulation and the ability to accurately predict both performance and acoustics has lead to the development of several numerical tools to help engine manufacturers during the prototyping stage. One dimensional simulation tools are widely used during this phase and they allow the simulation of several engine configurations within a short time. Certain components, however, such as the intake and exhaust manifolds, exhibit a high degree of geometric complexity, which cannot be accurately modelled by ID codes, unless equivalent ID models are adopted. The need of achieving good accuracy, along with acceptable computational runtime, has given the spur to the development of a geometry based quasi-3D approach. This is designed to model the acoustics and the fluid dynamics of both intake and exhaust system components used in internal combustion engines. Models of components are built using a network, or grid, of quasi-3D cells based primarily on the geometry of the system. The solution procedure is an explicitly time marching pseudo staggered grid approach, where the equations of mass and energy are solved at cell centers while the momentum equation at cell connections or boundaries. The quasi-3D approach has been fully integrated into a ID research code in order to study the behavior of intake and exhaust devices under real engine pulsating flow conditions. This approach was mainly developed to model the acoustic behavior of complex shape silencers, however, in this work it has been extended and applied to the prediction of the fluid dynamic behavior of intake and exhaust systems. The validation was carried on a high performance V4 motorbike engine. In particular, the silencer and the air box have been modeled resorting to a quasi-3D reconstruction. Calculated results of instantaneous pressure traces and volumetric efficiency have been compared to measured data, highlighting a good capability in capturing dynamic effects with a computational runtime much lower than the one required by the integration of fully 3D models with the ID. |
| Sponsorship | Internal Combustion Engine Division |
| Starting Page | 837 |
| Ending Page | 850 |
| Page Count | 14 |
| File Format | |
| ISBN | 9780791844663 |
| DOI | 10.1115/ICES2012-81181 |
| Conference Proceedings | ASME 2012 Internal Combustion Engine Division Spring Technical Conference |
| Language | English |
| Publisher Date | 2012-05-06 |
| Publisher Place | Torino, Piemonte, Italy |
| Access Restriction | Subscribed |
| Subject Keyword | Silencers Fluid dynamics Three-dimensional models Momentum Acoustics Unsteady flow Modeling Pressure Engines Exhaust systems Geometry Fluids Simulation Pulsatile flow Internal combustion engines Motorcycles Exhaust manifolds Shapes Pipes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|