Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Sadeh, Sepehr Mitra, Kunal |
| Copyright Year | 2016 |
| Abstract | Lasers are widely used as high-accuracy tools for material processing. Different types of lasers such as CO2, Nd:YAG, and excimer lasers are used in different operating modes such as continuous wave, pulsed or Q-switched. Volumes of materials and their composition, structure, and properties can be controlled or modified by varying laser pulses. In this research, by using laser as a material processing tool, an experimental method was developed for laser induced implantation doping of glass substrates with conductive metals. Experiments were performed on glass samples using Q-switched Nd:YAG lasers. Gold, silver, and copper were used as conductive dopant materials. Initial experiments were performed using nickel as a catalyst. Effect of the catalyst on the composition of implanted dopant material was observed using Large Area Rapid Imaging Analytical Tool (LARIAT). Through further experiment, the effect of several parameters such as beam fluence, scanning speed, pulse repetition frequency, wavelength, substrate temperature, dopant material, and glass substrate material on the morphology of heat affected zones were investigated by optical microscopy (OM). Depth of penetration in doped glass samples was measured for different substrate temperatures by means of a laser displacement sensor. The effect of beam fluence and glass substrate thickness on depth of penetration was investigated. The results of these non-destructive measurements were verified using scanning electron microscopy (SEM). Based on optical observations, morphological characteristics of the heat affected zone were assessed in order to obtain the best parameter settings in different experiments. These settings were defined by factors such as the number and size of cracks in glass substrates, and the quality of the distribution of dopant metal over the scanned pattern. While using a catalyst with substrates at room temperature, the best parameter settings were obtained at wavelength of 532 nm, pulse repetition frequency of 6 kHz, beam fluence of 0.36 J/cm2, and scanning speed of 0.10 m/s. By removing the catalyst, these settings were changed to 355 nm, 10 kHz, 0.09 J/cm2, and 0.01 m/s for gold sputtered soda-lime glass substrate at 500 °C. For beam fluence values ranging from 0.06 J/cm2 to 0.38 J/cm2, the obtained values for average depth of penetration were 255 μm and 187 μm in 1 mm and 3 mm thick soda-lime glass substrates respectively. Further development of this implantation method could lead to implantation of electronic circuits in transparent substrates, inspiring the evolution of transparent electronic devices such as transparent smart phones, smart windows and displays, and lighting products in the future. |
| Sponsorship | Heat Transfer Division |
| File Format | |
| ISBN | 9780791850336 |
| DOI | 10.1115/HT2016-7402 |
| Volume Number | Volume 2: Heat Transfer in Multiphase Systems; Gas Turbine Heat Transfer; Manufacturing and Materials Processing; Heat Transfer in Electronic Equipment; Heat and Mass Transfer in Biotechnology; Heat Transfer Under Extreme Conditions; Computational Heat Transfer; Heat Transfer Visualization Gallery; General Papers on Heat Transfer; Multiphase Flow and Heat Transfer; Transport Phenomena in Manufacturing and Materials Processing |
| Conference Proceedings | ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels |
| Language | English |
| Publisher Date | 2016-07-10 |
| Publisher Place | Washington, DC, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Q-switching Temperature Transparency Catalysts Metals Glass Carbon dioxide Materials processing Fluence (radiation measurement) Waves Optical microscopy Lasers Imaging Excimer lasers Sensors Copper Electronic circuits Nd-yag lasers Scanning electron microscopy Fracture (materials) Wavelength Displacement Silver Heat Nickel |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|