Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Nicholas, A. Bunce Bryan, D. Quay Domenic, A. Santavicca |
| Copyright Year | 2013 |
| Abstract | Flame response to imposed velocity fluctuations is experimentally measured in a single-nozzle, turbulent, swirling, fully-premixed combustor. The flame transfer function is used to quantify the flame’s response to imposed velocity fluctuations. Both the gain and phase of the flame transfer function are qualitatively similar for all operating conditions tested. Flame transfer function gain exhibits alternating regions of decreasing gain with increasing forcing frequency followed by regions of increasing gain with increasing forcing frequency. This alternating behavior gives rise to gain extrema. Flame transfer function phase magnitude increases quasi-linearly with increasing forcing frequency. Deviations from the linear behavior occur in the form of inflection points. Within the field, the current understanding is that the flame transfer function gain extrema are caused by the constructive/destructive interference of swirl number fluctuations and vortex shedding. Phase-synchronized images of forced flames are acquired to investigate the presence/importance of swirl number fluctuations, which manifest as fluctuations in mean flame position, and vortex shedding in this combustor. Analysis of phase-synchronized flame images reveals that mean flame position fluctuations are present at forcing frequencies corresponding to flame transfer function gain minima but not at forcing frequencies corresponding to flame transfer function gain maxima. This observation contradicts the understanding that flame transfer function gain maxima are caused by the constructive interference of mean flame position fluctuations and vortex shedding since mean flame position fluctuations are shown not to exist at flame transfer function gain maxima. Further analysis of phase-synchronized flame images shows that the variation of mean flame position fluctuation magnitude with forcing frequency follows an inverse trend to the variation of flame transfer function gain with forcing frequency, i.e. when mean flame position fluctuation magnitude increases flame transfer function gain decreases and vice versa. Based on these observations it is concluded that mean flame position fluctuations are a subtractive effect. The physical mechanism through which mean flame position fluctuations decrease flame response is through the interaction of the flame with the Kelvin-Helmholtz instability of the mixing layer in the combustor. When mean flame position fluctuations are large the flame moves closer to the mixing layer and damps the Kelvin-Helmholtz instability due to the increased kinematic viscosity, fluid dilatation, and baroclinic production of vorticity with opposite sign associated with the high temperature reaction zone. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855119 |
| DOI | 10.1115/GT2013-95812 |
| Volume Number | Volume 1B: Combustion, Fuels and Emissions |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Turbulence Vortex shedding Swirling flow Transfer functions High temperature Flames Fluids Kinematics Vorticity Fluctuations (physics) Nozzles Combustion chambers |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|