Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Abou-Taouk, Abdallah Sadasivuni, Suresh Lörstad, Daniel Eriksson, Lars-Erik |
| Copyright Year | 2013 |
| Abstract | This paper presents the results of Computational Fluid Dynamics (CFD) analyses obtained for the experimental version of the SGT-100 Dry Low Emission (DLE) gas turbine burner provided by Siemens Industrial Turbomachinery Ltd (SIT). A testing and measurement campaign for this burner was previously carried out at the DLR Institute of Combustion Technology, Stuttgart, Germany, for various operating pressure conditions. The present work shows the successful validation of the CFD model in terms of time-averaged temperature and velocity data within measurement errors at an operating pressure of 3 bar. Several well known global mechanisms are tested in this work, namely the Westbrook Dryer 2-step (WD) scheme, the Jones and Lindstedt 4-step (JL4) scheme, the Meredith et al. 3-step (M3) scheme and a recently developed in-house 4-step scheme (M4) for methane-air mixtures. The M4 scheme is optimized by matching the detailed GRI-Mech 3.0 mechanism in terms of 1D laminar flame speed, using the CHEMKIN software for a wide range of pressures (1 to 6 bar), unburned gas temperatures (295 to 650 K) and equivalence ratios range (0.4 to 1.6). CFD simulations are performed using the Eddy Dissipation Model (EDM)/Finite Rate Chemistry (FRC) non-premixed turbulence chemistry interaction model. Both steady-state Reynolds Averaged Navier Stokes (RANS) and hybrid Unsteady Reynolds Averaged Navier Stokes /Large Eddy Simulation (URANS/LES) turbulence models are used. The LES Wall Adaptive Large Eddy-Viscosity (WALE) model with finite rate chemistry is also tested for validation. Velocity profiles, flame temperatures and major species are compared with experiments for different global reaction mechanisms used with different turbulence models. A reasonable agreement is found with the M4 global reaction mechanism in predicting mixing, temperatures and major species. RANS simulations are observed to underpredict the temperature profiles downstream and overpredict in the upstream region, while the velocity profiles are found to be in close agreement with experiments. The SAS-SST turbulence model predicts the velocity profiles in good agreement with experimental data and slightly better than the RANS model. Both the transient simulations slightly overpredict the temperature profiles. The LES-WALE model gives too high and unrealistic temperatures. |
| Sponsorship | International Gas Turbine Institute |
| File Format | |
| ISBN | 9780791855119 |
| DOI | 10.1115/GT2013-95454 |
| Volume Number | Volume 1B: Combustion, Fuels and Emissions |
| Conference Proceedings | ASME Turbo Expo 2013: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2013-06-03 |
| Publisher Place | San Antonio, Texas, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Methane Viscosity Temperature Computer software Turbomachinery Temperature profiles Flames Gas turbines Large eddy simulation Energy dissipation Eddies (fluid dynamics) Combustion systems Engineering simulation Testing Turbulence Computational fluid dynamics Pressure Steady state Electrical discharge machining Emissions Transients (dynamics) Errors Chemistry Simulation Reynolds-averaged navier–stokes equations Combustion technologies |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|