Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Randall, P. Williams Thomas, E. Dyson David, G. Bogard Sean, D. Bradshaw |
| Copyright Year | 2012 |
| Abstract | The overall cooling effectiveness for a turbine airfoil was quantified based on the external surface temperature relative to the mainstream temperature and the inlet coolant temperature. This can be determined experimentally when the model is constructed so that the Biot number is similar to that of engine components. In this study, the overall cooling effectiveness was experimentally measured on a model turbine vane constructed of a material deigned to match Bi for engine conditions. The model incorporated an internal impingement cooling configuration. Overall cooling effectiveness and adiabatic film effectiveness were measured downstream of a single row of round holes positioned on the suction side of the vane. Experiments were conducted to evaluate the cooling effects of internal cooling alone, and then the combined effects of film cooling and internal cooling for a range of coolant flow rates. While the adiabatic film effectiveness decreased when using high momentum flux ratios for the film cooling, due to coolant jet separation, the overall cooling effectiveness increased at higher momentum flux ratios. This increase was due to increased internal cooling effects. Overall cooling effectiveness measurements were also compared to analytical predictions based on a 1D thermal analysis using measured adiabatic film effectiveness and overall cooling effectiveness without film cooling. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 1549 |
| Ending Page | 1557 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791844700 |
| DOI | 10.1115/GT2012-69110 |
| Volume Number | Volume 4: Heat Transfer, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2012: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2012-06-11 |
| Publisher Place | Copenhagen, Denmark |
| Access Restriction | Subscribed |
| Subject Keyword | Suction Temperature Cooling Impingement cooling Momentum Airfoils Separation (technology) Flow (dynamics) Engines Coolants Film cooling Thermal analysis Turbines |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|