Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Andrei, L. Andreini, A. Bianchini, C. Facchini, B. |
| Copyright Year | 2012 |
| Abstract | In the course of the years several turbulence models specifically developed to improve the predicting capabilities of conventional two-equations RANS models have been proposed. However they have been mainly tested against experiments only comparing with standard isotropic models, in single hole configuration and for very low blowing ratio. A systematic benchmark of the various non-conventional models exploring a wider range of application is hence missing. This paper performs a comparison of 3 recently proposed models over three different test cases of increasing computational complexity. The chosen test matrix covers a wide range of blowing ratios (0.5–3.0)including both single row and multi-row cases for which experimental data of reference are available. In particular the well known test by Sinha and Bogard [1] at BR = 0.5 is used in conjuction with two in-house carried out experiments: a single row film-cooling test at BR = 1.5 and a 15 rows test plate designed to study the interaction between slot and effusion cooling at BR = 3.0. The first two considered models are based on a tensorial definition of the eddy viscosity in which the stream-span position is augmented to overcome the main drawback connected with standard isotropic turbulence models that is the lower lateral spreading of the jet downwards the injection. An anisotropic factor to multiply the off-diagonal position is indeed calculated from an algebraic expression of the turbulent Reynolds number developed by Bergeles [2] from DNS statistics over a flat plate. This correction could be potentially implemented in the framework of any eddy viscosity model. It was chosen to compare the predictions of such modification applied to two among the most common two-equation turbulence models for film-cooling tests, namely the Two-Layer (TL) model and the k–ω Shear Stress Transport (SST), firstly proposed and tested in the past respectively by Azzi and Lakeal [3] and Cottin at al. [4]. The third model, proposed by Holloway et al. [5], involves the unsteady solution of the flow and thermal field to include the short-time response of the stress tensor to rapid strain rates. This model takes advantage of the solution of an additional transport equation for the local effective total stress to trace the strain rate history. The results are presented in terms of adiabatic effectiveness distribution over the plate as well as spanwise averaged profiles. |
| Sponsorship | International Gas Turbine Institute |
| Starting Page | 1445 |
| Ending Page | 1457 |
| Page Count | 13 |
| File Format | |
| ISBN | 9780791844700 |
| DOI | 10.1115/GT2012-68794 |
| Volume Number | Volume 4: Heat Transfer, Parts A and B |
| Conference Proceedings | ASME Turbo Expo 2012: Turbine Technical Conference and Exposition |
| Language | English |
| Publisher Date | 2012-06-11 |
| Publisher Place | Copenhagen, Denmark |
| Access Restriction | Subscribed |
| Subject Keyword | Viscosity Stress tensors Turbulence Cooling Flat plates Reynolds number Statistics as topic Flow (dynamics) Stress Algebra Reynolds-averaged navier–stokes equations Anisotropy Eddies (fluid dynamics) Shear stress Film cooling |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|