Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Roy, Arnab Pasaogullari, Ugur Michael, W. Renfro Baki, M. Cetegen |
| Copyright Year | 2010 |
| Abstract | Transient experimental validation and investigation of the effect of diffusivity of porous layers on the dynamic water vapor partial pressure profiles of a proton exchange membrane fuel cell (PEMFC) during load change is presented. A three dimensional, isothermal, transient, single-phase computational fluid dynamics based model is developed to validate with the water partial pressure profiles experimentally measured during start-up conditions earlier in a 50 cm2 PEMFC having a single serpentine flow path in counter-flow configuration. The fluid flow within the serpentine channel geometry is simulated using a straight channel fuel cell model with total channel length equivalent to the stretched length of the entire serpentine path incorporating the same amount of pressure drop from inlet to outlet. The model equations are solved using a multi-domain approach incorporating water transport through membrane and multi-component species transport through porous diffusion layer. The transient model predictions of water partial pressure profiles of anode and cathode channels are found to be in good agreement within the error bounds of the experimental results. This validation is also indicative of the two different time scales i.e. initial anode dip due to electro-osmotic drag and recovery due to back diffusion from cathode to anode. Steady state model predictions are compared to check for accuracy simultaneously. The model also delineates the significance of effective diffusivity of porous Gas Diffusion Layers (GDL) and Catalyst Layers (CL) on transient characteristics. In order to come up with best parameters to validate with experimental data, a sensitivity analysis with parametric variations of effective porosity of GDL and CL is performed with a single experimental data set and then applied to the remaining sets. Results show that the CL diffusivity has a more pronounced effect on water accumulation as well as on temporal water transport than GDL diffusivity. The numerical simulation thus provides a validated set of quantitative model parameters along with an insight to the underlying physics of water transport phenomena in a PEMFC. |
| Sponsorship | Advanced Energy Systems Division |
| Starting Page | 811 |
| Ending Page | 822 |
| Page Count | 12 |
| File Format | |
| ISBN | 9780791844045 |
| DOI | 10.1115/FuelCell2010-33336 |
| e-ISBN | 9780791838754 |
| Volume Number | ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1 |
| Conference Proceedings | ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2010-06-14 |
| Publisher Place | Brooklyn, New York, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Membranes Catalysts Fuel cells Gas diffusion layers Proton exchange membrane fuel cells Sensitivity analysis Transport phenomena Computational fluid dynamics Computer simulation Fluid dynamics Calibration Drag (fluid dynamics) Water vapor Pressure Diffusion (physics) Flow (dynamics) Steady state Physics Stress Transients (dynamics) Geometry Errors Pressure drop Porosity Anodes |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|