Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Zenyuk, Iryna Litster, Shawn |
| Copyright Year | 2010 |
| Abstract | We present a theoretical analysis of ionic transport inside the catalyst particle agglomerates that form the electrodes of proton exchange membrane (PEM) fuel cells. The electrodes continue to be the subject of intense research and development because they are still the largest cost and source of performance degradation in PEM fuel cells. The advancement of electrodes requires proper understanding of the electrode structure and the relevant transport processes. However, the details of the electrode microstructure and the micro-scale and nano-scale transport mechanisms are still not well understood. A common hypothesis, supported by recent coarse-grained molecular dynamics simulations, is that the primary pores (the pores inside the agglomerates) are void space and not filled with Nafion electrolyte. Instead, it has been postulated that the primary pores are saturated with liquid water during operation. Here, we report on the effect of the electric double layers (EDLs), which form at the interface between the water and the carbon catalyst supports, on the ionic transport within the agglomerates. The multi-scale model addresses phenomena at two length scales: (1) the nano-scale EDL thickness and (2) the microscale agglomerate radius. We model the EDL using the Gouy-Chapman-Stern model, which provides a pore average conductivity for the spherical conduction-reaction model of the agglomerate. We use a spherical agglomerate model to calculate an effectiveness factor for the electrochemical reactions. Here we present the application of the model to the anode, where the low activation overpotential allows linearizations and convenient analytical solutions. A key finding of this work is the important role the EDLs have in establishing the effectiveness of the platinum catalyst utilization. In addition, we resolve the dependence of the agglomerate effectiveness factor on the activation overpotential and agglomerate radius. We observe a significant nonmonotonic dependence of the catalyst effectiveness factor on the overpotential and dramatic improvement in effectiveness of catalyst utilization with smaller agglomerates. |
| Sponsorship | Advanced Energy Systems Division |
| Starting Page | 761 |
| Ending Page | 769 |
| Page Count | 9 |
| File Format | |
| ISBN | 9780791844045 |
| DOI | 10.1115/FuelCell2010-33299 |
| e-ISBN | 9780791838754 |
| Volume Number | ASME 2010 8th International Fuel Cell Science, Engineering and Technology Conference: Volume 1 |
| Conference Proceedings | ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology |
| Language | English |
| Publisher Date | 2010-06-14 |
| Publisher Place | Brooklyn, New York, USA |
| Access Restriction | Subscribed |
| Subject Keyword | Water Electrochemical reactions Electrical conductivity Catalysts Microscale devices Ionic conductivity Platinum catalysts Nanoscale phenomena Theoretical analysis Molecular dynamics simulation Carbon Overvoltage Electrodes Heat conduction Proton exchange membranes Industrial research Fuel cells Particulate matter Electrolytes Thermal conductivity Transport processes Anodes Proton exchange membrane fuel cells |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|