Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | The American Society of Mechanical Engineers (ASME) Digital Collection |
|---|---|
| Author | Watson, Cori Wood, Houston |
| Copyright Year | 2018 |
| Abstract | Helical groove seals are non-contacting annular seals used in pumping machinery to increase the efficiency and, in the case of the balance drum, to manage the axial force on the thrust bearing. Prior work has shown that optimization of helical groove seals can reduce the leakage by two thirds given a desired pressure differential or, conversely, can significantly increase the pressure differential across the helical groove seal given a flow rate. This study evaluates the dependency of the optimal helical groove seal design on the inlet preswirl, which is the ratio of the inlet circumferential velocity to the rotor surface speed. To accomplish this goal, second stage optimization from the previously optimized helical groove seal with grooves on the stator and water as the working fluid were conducted at a series of preswirls ranging from −1 to 1. Optimization is performed using ANSYS CFX, a commercial computational fluid dynamics software and mesh independence is confirmed for the baseline case. For each preswirl case, design of experiments for the design parameters of groove width, groove depth, groove spacing, and number of grooves was performed using a Kennard-Stone Algorithm. The optimized solution is interpolated from the simulations run by using multi-factor quadratic regression from the 30 simulations in each optimization and the interpolated solution is simulated for comparison. In addition to evaluating the optimized solution’s dependency on preswirl, the viability of using swirl breaks or swirl promoting inlet passages to improve the overall efficiency of the seal is discussed. Finally, the power loss performance is evaluated for each of the seal designs simulated so that potential trade-offs can be evaluated. Overall, the results show that increasing preswirl can increase the efficiency of the helical groove seal both by improving power loss and by improving leakage. |
| Sponsorship | Fluids Engineering Division |
| File Format | |
| ISBN | 9780791851579 |
| DOI | 10.1115/FEDSM2018-83492 |
| Volume Number | Volume 3: Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics |
| Conference Proceedings | ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting |
| Language | English |
| Publisher Date | 2018-07-15 |
| Publisher Place | Montreal, Quebec, Canada |
| Access Restriction | Subscribed |
| Subject Keyword | Leakage Water Computational fluid dynamics Computer software Rotors Pressure Flow (dynamics) Machinery Optimization Design Fluids Algorithms Simulation Experimental design Tradeoffs Thrust bearings Stators Engineering simulation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|