Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Mudge, Trevor Dreslinski, Ronald G. Blake, Geoffrey |
| Abstract | Hardware Transactional Memory offers a promising high performance and easier to program alternative to lock-based synchronization for creating parallel programs. This is particularly important as hardware manufacturers continue to put more cores on die. But transactional memory still has one main drawback: contention. Contention is caused by multiple transactions trying to speculatively modify the same memory location concurrently causing one or more transactions to abort and retry its execution. Contention serializes the execution, meaning high contention leads to very poor parallel performance. As more cores are added, contention worsens. To date contention-manager designs have been primarily reactive in nature and limited to various forms of randomized backoff to effectively stall contending transactions when conflicts occur. While backoff-based managers have been popular due to their simplicity, at higher core counts our analysis on the STAMP benchmark suite shows that backoff-based managers perform poorly. In particular, small groups of transactions create hot spots of contention that lead to this poor performance. We show these hot spots commonly consist of small sets of conflicts that occur in a predictable manner. To counter this challenge we introduce a dynamic contention management strategy that minimizes contention by using past history to identify when these hot spots will reoccur in the future and proactively schedule affected transactions around these hot spots. The strategy used predicts future contention and schedules to avoid it at runtime without the need for programmer input. Our experiments show that by using our proactive scheduling technique we outperform a backoff-based policy for a 16 processor system by an average of 85%. |
| Starting Page | 156 |
| Ending Page | 167 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781605587981 |
| DOI | 10.1145/1669112.1669133 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-12-12 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Proactive scheduling Software runtime Hardware transactional memory |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|