Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Ferret, Olivier Wang, Wei Besançon, Romaric Grau, Brigitte |
| Abstract | Information Extraction has recently been extended to new areas by loosening the constraints on the strict definition of the extracted information and allowing to design more open information extraction systems. In this new domain of unsupervised information extraction, we focus on the task of extracting and characterizing a priori unknown relations between a given set of entity types. One of the challenges of this task is to deal with the large amount of candidate relations when extracting them from a large corpus. We propose in this paper an approach for the filtering of such candidate relations based on heuristics and machine learning models. More precisely, we show that the best model for achieving this task is a Conditional Random Field model according to evaluations performed on a manually annotated corpus of about one thousand relations. We also tackle the problem of identifying semantically similar relations by clustering large sets of them. Such clustering is achieved by combining a classical clustering algorithm and a method for the efficient identification of highly similar relation pairs. Finally, we evaluate the impact of our filtering of relations on this semantic clustering with both internal measures and external measures. Results show that the filtering procedure doubles the recall of the clustering while keeping the same precision. |
| Starting Page | 1405 |
| Ending Page | 1414 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450307178 |
| DOI | 10.1145/2063576.2063780 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-10-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Unsupervised information extraction Filtering Machine learning Clustering |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|