Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Liu, Xiaohua Wang, Xiaolong Zhang, Ming Wei, Furu Zhou, Ming |
| Abstract | Twitter is one of the biggest platforms where massive instant messages (i.e. tweets) are published every day. Users tend to express their real feelings freely in Twitter, which makes it an ideal source for capturing the opinions towards various interesting topics, such as brands, products or celebrities, etc. Naturally, people may anticipate an approach to receiving the common sentiment tendency towards these topics directly rather than through reading the huge amount of tweets about them. On the other side, Hashtags, starting with a symbol "#" ahead of keywords or phrases, are widely used in tweets as coarse-grained topics. In this paper, instead of presenting the sentiment polarity of each tweet relevant to the topic, we focus our study on hashtag-level sentiment classification. This task aims to automatically generate the overall sentiment polarity for a given hashtag in a certain time period, which markedly differs from the conventional sentence-level and document-level sentiment analysis. Our investigation illustrates that three types of information is useful to address the task, including (1) sentiment polarity of tweets containing the hashtag; (2) hashtags co-occurrence relationship and (3) the literal meaning of hashtags. Consequently, in order to incorporate the first two types of information into a classification framework where hashtags can be classified collectively, we propose a novel graph model and investigate three approximate collective classification algorithms for inference. Going one step further, we show that the performance can be remarkably improved using an enhanced boosting classification setting in which we employ the literal meaning of hashtags as semi-supervised information. Experimental results on a real-life data set consisting of 29,195 tweets and 2,181 hashtags show the effectiveness of the proposed model and algorithms. |
| Starting Page | 1031 |
| Ending Page | 1040 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450307178 |
| DOI | 10.1145/2063576.2063726 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2011-10-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Hashtag Sentiment analysis Graph-based classification Twitter |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|