Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Gupta, Manish Varma, Vasudeva J, Ganesh |
| Abstract | Doc2Sent2Vec is an unsupervised approach to learn low-dimensional feature vector (or embedding) for a document. This embedding captures the semantics of the document and can be fed as input to machine learning algorithms to solve a myriad number of applications in the field of data mining and information retrieval. Some of these applications include document classification, retrieval, and ranking. The proposed approach is two-phased. In the first phase, the model learns a vector for each sentence in the document using a standard word-level language model. In the next phase, it learns the document representation from the sentence sequence using a novel sentence-level language model. Intuitively, the first phase captures the word-level coherence to learn sentence embeddings, while the second phase captures the sentence-level coherence to learn document embeddings. Compared to the state-of-the-art models that learn document vectors directly from the word sequences, we hypothesize that the proposed decoupled strategy of learning sentence embeddings followed by document embeddings helps the model learn accurate and rich document representations. We evaluate the learned document embeddings by considering two classification tasks: scientific article classification and Wikipedia page classification. Our model outperforms the current state-of-the-art models in the scientific article classification task by ?12.07% and the Wikipedia page classification task by ?6.93%, both in terms of F1 score. These results highlight the superior quality of document embeddings learned by the Doc2Sent2Vec approach. |
| Starting Page | 809 |
| Ending Page | 812 |
| Page Count | 4 |
| File Format | |
| ISBN | 9781450340694 |
| DOI | 10.1145/2911451.2914717 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-07-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Distributed representation Sentence embedding Document modeling Machine learning Document embedding Word embedding |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|