Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kandylas, Vasilis Shelford, Steven Alonso, Omar Patel, Rajesh Slivkins, Aleksandrs Abraham, Ittai |
| Abstract | Crowdsourcing has been part of the IR toolbox as a cheap and fast mechanism to obtain labels for system development and evaluation. Successful deployment of crowdsourcing at scale involves adjusting many variables, a very important one being the number of workers needed per human intelligence task (HIT). We consider the crowdsourcing task of learning the answer to simple multiple-choice HITs, which are representative of many relevance experiments. In order to provide statistically significant results, one often needs to ask multiple workers to answer the same HIT. A stopping rule is an algorithm that, given a HIT, decides for any given set of worker answers to stop and output an answer or iterate and ask one more worker. In contrast to other solutions that try to estimate worker performance and answer at the same time, our approach assumes the historical performance of a worker is known and tries to estimate the HIT difficulty and answer at the same time. The difficulty of the HIT decides how much weight to give to each worker's answer. In this paper we investigate how to devise better stopping rules given workers' performance quality scores. We suggest adaptive exploration as a promising approach for scalable and automatic creation of ground truth. We conduct a data analysis on an industrial crowdsourcing platform, and use the observations from this analysis to design new stopping rules that use the workers' quality scores in a non-trivial manner. We then perform a number of experiments using real-world datasets and simulated data, showing that our algorithm performs better than other approaches. |
| Starting Page | 473 |
| Ending Page | 482 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450340694 |
| DOI | 10.1145/2911451.2911514 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-07-07 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Crowdsourcing Multi-armed bandits Label quality Adaptive algorithms Assessments Ground truth |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|