Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Markman, Vita Bhasin, Anmol Amin, Mohammad Yan, Baoshi Sun, Qian Martell, Craig Ye, Jieping |
| Abstract | LinkedIn Groups provide a platform on which professionals with similar background, target and specialities can share content, take part in discussions and establish opinions on industry topics. As in most online social communities, spam content in LinkedIn Groups poses great challenges to the user experience and could eventually lead to substantial loss of active users. Building an intelligent and scalable spam detection system is highly desirable but faces difficulties such as lack of labeled training data, particularly for languages other than English. In this paper, we take the spam (Spanish) job posting detection as the target problem and build a generic machine learning pipeline for multi-lingual spam detection. The main components are feature generation and knowledge migration via transfer learning. Specifically, in the feature generation phase, a relatively large labeled data set is generated via machine translation. Together with a large set of unlabeled human written Spanish data, unigram features are generated based on the frequency. In the second phase, machine translated data are properly reweighted to capture the discrepancy from human written ones and classifiers can be built on top of them. To make effective use of a small portion of labeled data available in human written Spanish, an adaptive transfer learning algorithm is proposed to further improve the performance. We evaluate the proposed method on LinkedIn's production data and the promising results verify the efficacy of our proposed algorithm. The pipeline is ready for production. |
| Starting Page | 2147 |
| Ending Page | 2156 |
| Page Count | 10 |
| File Format | PDF MP4 |
| ISBN | 9781450336642 |
| DOI | 10.1145/2783258.2788575 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-08-10 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Text mining Nlp Transfer learning Classification |
| Content Type | Audio Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|