Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Jiang, Xiaoqian Han, Wook-Shin Oh, Jinoh Yu, Hwanjo |
| Abstract | Matrix factorization is one of the fundamental techniques for analyzing latent relationship between two entities. Especially, it is used for recommendation for its high accuracy. Efficient parallel SGD matrix factorization algorithms have been developed for large matrices to speed up the convergence of factorization. However, most of them are designed for a shared-memory environment thus fail to factorize a large matrix that is too big to fit in memory, and their performances are also unreliable when the matrix is skewed. This paper proposes a fast and robust parallel SGD matrix factorization algorithm, called MLGF-MF, which is robust to skewed matrices and runs efficiently on block-storage devices (e.g., SSD disks) as well as shared-memory. MLGF-MF uses Multi-Level Grid File (MLGF) for partitioning the matrix and minimizes the cost for scheduling parallel SGD updates on the partitioned regions by exploiting partial match queries processing}. Thereby, MLGF-MF produces reliable results efficiently even on skewed matrices. MLGF-MF is designed with asynchronous I/O permeated in the algorithm such that CPU keeps executing without waiting for I/O to complete. Thereby, MLGF-MF overlaps the CPU and I/O processing, which eventually offsets the I/O cost and maximizes the CPU utility. Recent flash SSD disks support high performance parallel I/O, thus are appropriate for executing the asynchronous I/O. From our extensive evaluations, MLGF-MF significantly outperforms (or converges faster than) the state-of-the-art algorithms in both shared-memory and block-storage environments. In addition, the outputs of MLGF-MF is significantly more robust to skewed matrices. Our implementation of MLGF-MF is available at http://dm.postech.ac.kr/MLGF-MF as executable files. |
| Starting Page | 865 |
| Ending Page | 874 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450336642 |
| DOI | 10.1145/2783258.2783322 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2015-08-10 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Matrix factorization Stochastic gradient descent |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|