Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Mishra, Asit K. Kayiran, Onur Tang, Xulong Jog, Adwait Das, Chita R. Kandemir, Mahmut T. Mutlu, Onur Pattnaik, Ashutosh |
| Abstract | Processing data in or near memory (PIM), as opposed to in conventional computational units in a processor, can greatly alleviate the performance and energy penalties of data transfers from/to main memory. Graphics Processing Unit (GPU) architectures and applications, where main memory bandwidth is a critical bottleneck, can benefit from the use of PIM. To this end, an application should be properly partitioned and scheduled to execute on either the main, powerful GPU cores that are far away from memory or the auxiliary, simple GPU cores that are close to memory (e.g., in the logic layer of 3D-stacked DRAM). This paper investigates two key code scheduling issues in such a GPU architecture that has PIM capabilities, to maximize performance and energy-efficiency: (1) how to automatically identify the code segments, or kernels, to be offloaded to the cores in memory, and (2) how to concurrently schedule multiple kernels on the main GPU cores and the auxiliary GPU cores in memory. We develop two new runtime techniques: (1) a regression-based affinity prediction model and mechanism that accurately identifies which kernels would benefit from PIM and offloads them to GPU cores in memory, and (2) a concurrent kernel management mechanism that uses the affinity prediction model, a new kernel execution time prediction model, and kernel dependency information to decide which kernels to schedule concurrently on main GPU cores and the GPU cores in memory. Our experimental evaluations across 25 GPU applications demonstrate that these two techniques can significantly improve both application performance (by 25% and 42%, respectively, on average) and energy efficiency (by 28% and 27%). |
| Starting Page | 31 |
| Ending Page | 44 |
| Page Count | 14 |
| File Format | |
| ISBN | 9781450341219 |
| DOI | 10.1145/2967938.2967940 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-09-11 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Near data computing Gpu Kernel scheduling Processing-in-memory |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|