Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Abowd, John M. Haney, Samuel Kutzbach, Mark Vilhuber, Lars Machanavajjhala, Ashwin Graham, Matthew |
| Abstract | National statistical agencies around the world publish tabular summaries based on combined employer-employee (ER-EE) data. The privacy of both individuals and business establishments that feature in these data are protected by law in most countries. These data are currently released using a variety of statistical disclosure limitation (SDL) techniques that do not reveal the exact characteristics of particular employers and employees, but lack provable privacy guarantees limiting inferential disclosures. In this work, we present novel algorithms for releasing tabular summaries of linked ER-EE data with formal, provable guarantees of privacy. We show that state-of-the-art differentially private algorithms add too much noise for the output to be useful. Instead, we identify the privacy requirements mandated by current interpretations of the relevant laws, and formalize them using the Pufferfish framework. We then develop new privacy definitions that are customized to ER-EE data and satisfy the statutory privacy requirements. We implement the experiments in this paper on production data gathered by the U.S. Census Bureau. An empirical evaluation of utility for these data shows that for reasonable values of the privacy-loss parameter ε≥ 1, the additive error introduced by our provably private algorithms is comparable, and in some cases better, than the error introduced by existing SDL techniques that have no provable privacy guarantees. For some complex queries currently published, however, our algorithms do not have utility comparable to the existing traditional SDL algorithms. Those queries are fodder for future research. |
| Starting Page | 1339 |
| Ending Page | 1354 |
| Page Count | 16 |
| File Format | |
| ISBN | 9781450341974 |
| DOI | 10.1145/3035918.3035940 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-05-09 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Differential privacy U.s. census bureau Pufferfish privacy |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|