Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kawarabayashi, Ken-ichi Ohsaka, Naoto Sonobe, Tomohiro Fujita, Sumio |
| Abstract | Fueled by the increasing popularity of online social networks, social influence analysis has attracted a great deal of research attention in the past decade. The diffusion process is often modeled using influence graphs, and there has been a line of research that involves algorithmic problems in influence graphs. However, the vast size of today's real-world networks raises a serious issue with regard to computational efficiency. In this paper, we propose a new algorithm for reducing influence graphs. Given an input influence graph, the proposed algorithm produces a vertex-weighted influence graph, which is compact and approximates the diffusion properties of the input graph. The central strategy of influence graph reduction is coarsening, which has the potential to greatly reduce the number of edges by merging a vertex set into a single weighted vertex. We provide two implementations; a speed-oriented implementation which runs in linear time with linear space and a scalability-oriented implementation which runs in practically linear time with sublinear space. Further, we present general frameworks using our compact graphs that accelerate existing algorithms for influence maximization and influence estimation problems, which are motivated by practical applications, such as viral marketing. Using these frameworks, we can quickly obtain solutions that have accuracy guarantees under a reasonable assumption. Experiments with real-world networks demonstrate that the proposed algorithm can scale to billion-edge graphs and reduce the graph size to up to 4%. In addition, our influence maximization framework achieves four times speed-up of a state-of-the-art D-SSA algorithm, and our influence estimation framework cuts down the computation time of a simulation-based method to 3.5%. |
| Starting Page | 635 |
| Ending Page | 650 |
| Page Count | 16 |
| File Format | |
| ISBN | 9781450341974 |
| DOI | 10.1145/3035918.3064045 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2017-05-09 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Influence maximization Graph reduction Social networks |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|