Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Song, William J. Bose, Pradip Buyuktosunoglu, Alper Cher, Chen-Yong |
| Abstract | It is generally perceived that heterogeneous multicore processors will provide better performance and power efficiency over conventional homogeneous cores. However, heterogeneity can also be achieved within a homogeneous core design, instantiated under different voltage-frequency settings or per-core simultaneous multi-treading (SMT) modes. In this paper, we pursue an architectural study motivated by the question, "Can we get by with a single, complex SMT-equipped core design that can operate at different voltage-frequency points? Or, is it mandatory to invest into two different core types, one complex and the other simple?" We propose a systematic, measurement-driven methodology to evaluate processor heterogeneity options. Our analysis particularly focuses on the domain of real-time constrained embedded processors. The study is based on a direct measurement of two real processors; one that uses simple in-order cores, and another that uses complex out-of-order cores. The effect of heterogeneous core composition (consisting of complex and simple cores in the same chip) is analytically projected from measurements gleaned from the two different systems. Our analysis yields new interesting insights. When dealing with two core types without SMT enabled, true core heterogeneity does not necessarily provide better performance or power efficiency under area and power constraints. If the complex-core homogeneous processor invokes SMT, it outperforms true heterogeneity by offering 28% better power efficiency, assuming that simple cores in the heterogeneous system operate only in single-threaded mode without SMT capability. If the small cores employ SMT, true heterogeneity yields 32% better power efficiency than the homogeneous processor with SMT. |
| Starting Page | 284 |
| Ending Page | 289 |
| Page Count | 6 |
| File Format | |
| ISBN | 9781450341851 |
| DOI | 10.1145/2934583.2934637 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2016-08-08 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|