Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Hong, Liangjie Doumith, Aziz S. Davison, Brian D. |
| Abstract | Users of popular services like Twitter and Facebook are often simultaneously overwhelmed with the amount of information delivered via their social connections and miss out on much content that they might have liked to see, even though it was distributed outside of their social circle. Both issues serve as difficulties to the users and drawbacks to the services. Social media service providers can benefit from understanding user interests and how they interact with the service, potentially predicting their behaviors in the future. In this paper, we address the problem of simultaneously predicting user decisions and modeling users' interests in social media by analyzing rich information gathered from Twitter. The task differs from conventional recommender systems as the cold-start problem is ubiquitous, and rich features, including textual content, need to be considered. We build predictive models for user decisions in Twitter by proposing Co-Factorization Machines (CoFM), an extension of a state-of-the-art recommendation model, to handle multiple aspects of the dataset at the same time. Additionally, we discuss and compare ranking-based loss functions in the context of recommender systems, providing the first view of how they vary from each other and perform in real tasks. We explore an extensive set of features and conduct experiments on a real-world dataset, concluding that CoFM with ranking-based loss functions is superior to state-of-the-art methods and yields interpretable latent factors. |
| Starting Page | 557 |
| Ending Page | 566 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450318693 |
| DOI | 10.1145/2433396.2433467 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-02-04 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Collaborative filtering Twitter Latent factor models Recommender systems |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|