Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Pandey, Sandeep Josifovski, Vanja Pueyo, Lluis Garcia Yuan, Jeff Kanagal, Bhargav Ahmed, Amr |
| Abstract | Items in recommender systems are usually associated with annotated attributes: for e.g., brand and price for products; agency for news articles, etc. Such attributes are highly informative and must be exploited for accurate recommendation. While learning a user preference model over these attributes can result in an interpretable recommender system and can hands the cold start problem, it suffers from two major drawbacks: data sparsity and the inability to model random effects. On the other hand, latent-factor collaborative filtering models have shown great promise in recommender systems; however, its performance on rare items is poor. In this paper we propose a novel model LFUM, which provides the advantages of both of the above models. We learn user preferences (over the attributes) using a personalized Bayesian hierarchical model that uses a combination(additive model) of a globally learned preference model along with user-specific preferences. To combat data-sparsity, we smooth these preferences over the item-taxonomy using an efficient forward-filtering and backward-smoothing inference algorithm. Our inference algorithms can handle both discrete attributes (e.g., item brands) and continuous attributes (e.g., item prices). We combine the user preferences with the latent-factor models and train the resulting collaborative filtering system end-to-end using the successful BPR ranking algorithm. In our extensive experimental analysis, we show that our proposed model outperforms several commonly used baselines and we carry out an ablation study showing the benefits of each component of our model. |
| Starting Page | 385 |
| Ending Page | 394 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781450318693 |
| DOI | 10.1145/2433396.2433445 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2013-02-04 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Latent variable models Recomcollaborative filtering Recomfactor models Inference Recommendation |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|