Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Lin, Mingjie El Gamal, Abbas |
| Abstract | A previous study on the benefits of monolithically stacked 3D-FPGA has estimated a 3.2x improvement in logic density, a 1.7x improvement in delay, and a 1.7x improvement in dynamic power consumption over a baseline 2D-FPGA with no change in architecture. This paper describes a new routing fabric and shows that a 3D-FPGA using this fabric can achieve a 3.3x improvement in logic density, a 2.35x improvement in delay, and a 2.82x improvement in dynamic power consumption over the same baseline 2D-FPGA. The additional improvements in delay and power consumption are achieved by reducing net loading in several ways: (i) Only Single and Double interconnect segments are used. This reduces the total interconnect length used to implement each net. (ii) The routing fabric is hierarchical. Each logic block's inputs and outputs connect first to local segments. These segments can be then programmably connected to local segments in neighboring routing blocks via programmable buffers and/or to interconnect segments in routing channels via muxes with buffered outputs. (iii) Interconnect segments can be directly connected to form longer segments using programmable buffers without going through routing blocks. (iv) The routing block provides switching capability beyond that of a conventional switch box. A 3D-FPGA using this new routing fabric can be realized by stacking two configuration memory layers and a switch layer on top of a standard CMOS layer with a total of 12 metal layers interspersed between them. A CAD flow based on VPR with appropriate modifications to the routing graph generation and routing algorithm is developed and used in the performance analysis. |
| Starting Page | 3 |
| Ending Page | 12 |
| Page Count | 10 |
| File Format | |
| ISBN | 9781595936004 |
| DOI | 10.1145/1216919.1216921 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2007-02-18 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Fpga 3d monolithically stacked Performance analysis Routing architecture |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|